

Medaglia d'oro ql merito civile e militare Citta' della Disfida AREA TECNICA - SETTORE LAVORI PUBBLICI

DGGETTD: LAVORI PER LA REALIZZAZIONE DI N. 1160 NICCHIE FUNERARIE PRESSO IL CIMITERO COMUNALE IN ZONA DI ESPANSIONE NORD OVEST – SETTIMO LOTTO

CDSWin - Computer Design of Structures

CDSWin – CDMa Win Release 2009, 2010, 2011 e 2012

Validazione del codice di calcolo

Software Tecnico Scientifico S.r.I.

Indice

Analisi Statica Lineare

Test di verifica n° 1:	Trave piana isostaticamente vincolata
Test di verifica n° 2:	Ginocchiera soggetta a carico concentrato
Test di verifica n° 3:	Trave piana con estremi incastrati
Test di verifica n° 4:	Sistema piano di aste sospese (1)
Test di verifica n° 5:	Stato tensionale di una trave inflessa
Test di verifica n° 6:	Stato tensionale di una trave inflessa
Test di verifica nº 7:	Sistema piano di aste sospese (2)
Test di verifica n° 8:	Sistema piano di aste sospese (3)
Test di verifica n° 9:	Telaio piano
Test di verifica n°10:	Travatura reticolare piana
Test di verifica n°11:	Pipe-line soggetta a carico termico
Test di verifica n°12:	Trave a mensola soggetta all'azione di un momento torcente concentrato
Test di verifica n°13:	Trave a mensola a sezione
Test di verifica n°14:	Lastra rettangolare piana
Test di verifica n°15:	Flessione in una piastra circolare utilizzando elementi assialsimmetrici
Test di verifica n°16:	La piastra rettangolare incastrata al contorno e soggetta ad un carico uniformemente ripartito

Analisi Statica: Non Linearità Geometrica

Test di verifica nº17: Carico critico di una trave piana

Analisi dinamica modale

Test di verifica nº18: Frequenze naturali di vibrazione in una trave appoggiata- appoggiata Test di verifica n°19: Frequenze naturali di vibrazione in una trave a mensola Test di verifica n°20: Frequenza naturale di vibrazione di un oscillatore semplice Test di verifica n°21: Frequenza naturale di vibrazione di un oscillatore con due masse in serie Test di verifica n°22: Analisi in frequenza di una piastra rettangolare Test di verifica n°23: Analisi in frequenza di una piastra sottile romboidale

Analisi statica non lineare Push Over

Test di verifica n°24: Elemento mensola a sezione costante Test di verifica n°25: Telaio piano Test di verifica nº26: Edificio regolare

Verifiche agli S.L.E. e calcolo delle sollecitazioni resistenti per sezioni in c.a.

Test di verifica n°27: a) Verifica allo Stato Limite di Esercizio di fessurazione b) Determinazione del momento e del taglio resistenti per una sezione in c.a.

Verifiche murature (CDMa Win)

Test di verifica n°28: Analisi sismica lineare e non lineare (push over) di una facciata in muratura

Rinforzi FRP

Test di verifica n°29: Test pratico di validazione numerica della progettazione dei rinforzi in FRP

Appendice A Appendice B

Introduzione

Il presente lavoro contiene un insieme di test il cui obiettivo è quello di verificare l'affidabilità e l'applicabilità del solutore agli elementi finiti utilizzato dal programma *CDSWin*.

Il metodo degli elementi finiti rappresenta un argomento teorico molto vasto, sicuramente complesso, e gli esempi riportati, pur non avendo la pretesa di chiarire tale procedimento, rappresentano la più comune e basilare applicazione di questo metodo.

Al fine di raggiungere l'obiettivo di verifica posto, gli esempi riportati nelle pagine seguenti abbracciano differenti analisi di calcolo, parecchi elementi, diverse mesh e/o condizioni al contorno e provenendo da autorevoli testi ingegneristici, fanno riferimento a problemi la cui soluzione teorica, essendo nota, può essere confrontata con quella fornita dal programma al termine dell'elaborazione.

Si osservi, inoltre, che i problemi analizzati nella maggior parte dei test sono stati estratti da testi anglosassoni che, ovviamente, utilizzano unità di misura diverse da quelle metriche. Pertanto, per poter convertire le varie grandezze dal sistema anglosassone a quello metrico, si è reso necessario il ricorso a fattori di conversione, che approssimando tra loro i valori delle varie grandezze, ne consentono il passaggio da un sistema all'altro.

Quindi, per ciascuno dei test eseguiti è possibile affermare che il lieve scostamento esistente tra il risultato finale fornito dall'elaborazione e quello teorico è imputabile proprio alle conversioni effettuate.

Per ogni test svolto viene citata la specifica fonte del riferimento e vengono forniti tutti i dati necessari per riprodurre i risultati ottenuti.

Test di verifica n[•]1

Trave piana isostaticamente vincolata

Fonte di riferimento: A&C- Rif.[1]: Analisi e calcolo nº 5, Apr.-Giu. 2001

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: Una trave a sezione rettangolare è isostaticamente vincolata ed è soggetta all'azione di un carico assiale concentrato P in corrispondenza del nodo nº 2.

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Modello di calcolo: Ai fini dell'analisi è sufficiente modellare il sistema come unico elemento monodimensionale. I nodi vengono inseriti in corrispondenza degli estremi vincolati.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche
$E=2000000 \ Kg/cm^2$	Larghezza, a=20 mm
	Altezza, $b=5 mm$

Obiettivo: Trascurando il peso delle aste l'analisi si propone di illustrare:

- La linearità della relazione carico-deformazione; •
- L'effetto del carico applicato eliminando gradi di libertà al sistema; .
- L'analisi delle deformazioni libere;

e quindi di verificare il comportamento dell'elemento asta sotto l'azione del carico P confrontando la soluzione teorica con quella fornita dall'analisi di CDSWin.

Caso 1:

Con le condizioni al contorno descritte in fig. 1 eseguire il calcolo applicando il carico P = 0.1 t in corrispondenza del nodo n°2 in direzione x.

La soluzione teorica, per il sistema descritto, prevede un unico spostamento assiale non nullo sul nodo n° 2 ed un valore della forza di reazione H1 pari al valore del carico P applicato. Tutte le altre reazioni vincolari devono risultare nulle.

 $\begin{array}{l} H1 = P \\ V1 = 0 \end{array} \qquad \qquad V2 = 0 \end{array}$

Spostamenti u_x (mm)

Nodi	Soluzione teorica	CDSWin	Ratio ^(*)
1	0	0	1.000
2	0.005	0.005	1.000

Spostamenti v_z (mm)

Nodi	Soluzione teorica	CDSWin	Ratio
	vz	v _z	vz
1	0	0	1.000
2	0	0	1.000

Reazioni vincolari

H (tonn.)

Nodi	Soluzione teorica	CDSWin	Ratio
1	-0.10	-0.10	1.000
2	0	0	1.000

V (tonn.)

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	0	0	1.000

Caso 2:

Eseguire il calcolo applicando il carico P =0.2 t in corrispondenza del nodo n°2 in direzione x.

La soluzione prevede per uno carico doppio uno spostamento assiale doppio in corrispondenza del punto di applicazione del carico (nodo n $^{\circ}$ 2).

Questo garantisce la linearità del comportamento del sistema analizzato.

Spostamenti u_x (mm)

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	0.01	0.01	1.000

Spostamenti v_z (mm)

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	0	0	1.000

Reazioni vincolari

H (tonn.)

Nodi	Soluzione teorica	CDSWin	Ratio
	Н	Н	Н
1	-0.20	-0.20	1.000
2	0	0	1.000

V (tonn.)

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	0	0	1.000

Caso 3:

Eseguire il calcolo come descritto nel caso 1, ma bloccando anche la traslazione orizzontale del nodo n°2. La soluzione teorica, in questo caso, prevede per lo spostamento assiale del nodo n° 2 un valore nullo.

Spostamenti u_x (mm)

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	0	0	1.000

Spostamenti v_z (mm)

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	0	0	1.000

Caso 4:

Eseguire il calcolo come descritto nel caso 1, ma applicando nel nodo n°2 il carico P in direzione z. Se è soppresso il grado di libertà in z, nel nodo, anche in questo caso non deve verificarsi alcuna traslazione in z.

Spostamenti u_x (mm)

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	0	0	1.000

Spostamenti v_z (mm)

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	0	0	1.000

Caso 5:

Utilizzando le condizioni al contorno del caso 1 imporre in corrispondenza del nodo n° 2 uno spostamento assiale di entità pari a quella generata dall'applicazione del carico P=0.1 t:

 $\eta = 0.005 \ mm$

In questo caso il risultato dell'analisi deve produrre nel nodo n°2 l'insorgere di una forza pari a P=0.1 t Ciò evidenzia, per il nodo, la presenza di una relazione di equivalenza tra forze e spostamenti.

Spostamenti u_x (mm)

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	0.005	0.005	1.000

Spostamenti v_z (mm)

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	0	0	1.000

Reazioni vincolari

H (tonn.)

Nodi	Soluzione teorica	CDSWin	Ratio
1	-0.10	-0.10	1.000
2	-0.10	-0.10	1.000

V (tonn.)

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	0	0	1.000

CDSWin Manuale di Verifica

Test di verifica n°1

Caso 6:

Suddividere, mediante l'inserimento di un nodo nel punto mediano, l'asta del sistema descritto in due elementi e con le condizioni al contorno definite nel caso 1 analizzarne il comportamento.

L'analisi eseguita con CDSWin produce gli stessi effetti già esaminati nel caso 1.

CDSWin Manuale di Verifica

Test di verifica n°2

Ginocchiera soggetta a carico concentrato

Fonte di riferimento: A&C- Rif.[2]: Analisi e calcolo nº 6, Lug.-Set. 2001

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: Dato il modello di calcolo in fig. 1, costituito da due aste di sezione rettangolare, applicare un carico P=0,1 t e determinare i valori degli spostamenti del nodo 2 in relazione al condizionamento che si genera a seguito della variazione dell'angolo α .

Fig. 1: Schema del problema

Modello di calcolo: Ai fini dell'analisi è sufficiente modellare il sistema come unione di due elementi monodimensionali. I nodi vengono inseriti in corrispondenza degli estremi vincolati e del punto d'applicazione del carico P.

Fig. 2: Rappresentazione agli elementi finiti

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	
	Larghezza, a=20 mm	
$E=2000000 \ Kg/cm^2$	Altezza, $b=5 mm$	
	Lunghezza, L=10 cm	

Obiettivo: L'analisi si propone di investigare l'esistenza di eventuali mal-condizionamenti della matrice di rigidità del sistema, e quindi di verificare il comportamento dell'elemento asta sotto l'azione del carico P

Caso 1:

Per il nodo n° 2 della struttura riportata in Fig. 1 e con le condizioni al contorno descritte, al variare dell'inclinazione dell'angolo α , si sono ottenuti i seguenti valori di spostamento:

α(gradi)	Soluzione teorica	CDSWin	Ratio ^(*)
10. 0	- 0.043343	- 0.043	0. 992
5.00	- 0.166435	- 0.166	0. 997
1.00	- 4.10599	- 4.106	1.000
0.50	-16.4183	- 16.418	0. 999
0. 10	- 410.037	- 410.037	1.000
0.05	- 1643.91	- 1643.908	1.000
0. 01	- 41286.8	- 41286.832	1.000

Spostamenti v_z (mm)

Caso 2:

Nel caso in cui la struttura venga modellata con un solo elemento, eseguire nuovamente il calcolo e valutare i risultati.

Fig. 3: Schema del problema

Spostamenti v_z (mm)

α(gradi)	Soluzione teorica	CDSWin	Ratio
10. 0	- 0.043343	-0.043	0. 992
5.00	- 0.166435	-0.166	0. 997
1.00	- 4.10599	-4.106	1.000
0.50	-16.4183	-16.418	0. 999
0. 10	- 410.037	-410.037	1.000
0.05	- 1643.91	-1643.908	1.000
0. 01	- 41286.8	-41286.832	1.000

<u>Trave piana con estremi incastrati</u>

Fonte di riferimento: Timoshenko, Rif. [4]: Strength of Material, Part I, Elementary Theory and Problems, pg. 26, problem 10

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: Asta di sezione prismatica incastrata agli estremi e soggetta, in corrispondenza di due sezioni intermedie, all'azione delle forze assiali $F_1 e F_2$.

Obiettivo: Trascurando il peso delle aste determinare le reazioni vincolari R₁ e R₂.

Modello di calcolo: I nodi vengono inseriti in corrispondenza degli estremi vincolati e di ciascuno dei due punti di applicazione delle forze $F_1 e F_2$.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	Carico
	L=10 in= 25.4 cm	
$E=30 \ge 10^6 psi=2109209 Kg/cm^2$	$a=b=0.3L=7.62 \ cm$	$F_1 = 2F_2 = 1000 \ lb = 0.454 \ t$
	$A=100 \ cm^2$	

Soluzione teorica: La soluzione teorica fornisce:

R₁=900.0 lb=408.23 Kg

R₂=600.0 lb=272.15 Kg

Analisi dei risultati ^(*):

Soluzione teorica	CDSWin	<i>Ratio</i> ^(**)
$R_1 = 408.23 \ Kg$	408 Kg	0.999
R ₂ =272.15 Kg	272 Kg	0.999

Fig. 3: Colormap sforzo normale

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

^{(**):} per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Sistema piano di aste sospese (1)

Fonte di riferimento: Timoshenko, Rif. [4]: Strength of Material, Part I, Elementary Theory and Problems, pg. 10, problem 2

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: La struttura in fig. 1 è costituita da due aste d'acciaio uguali, ciascuna di lunghezza L e sezione trasversale di area A. Tutti gli estremi delle due aste sono incernierati e la struttura viene sottoposta all'azione di un carico concentrato F.

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Obiettivo: Trascurando il peso delle aste, perché trascurabile rispetto al carico F, determinare sia il valore della tensione σ in ciascuna delle aste, sia il valore dell'abbassamento δ del nodo 2.

Modello di calcolo: Le dimensioni *a* e *b* sono calcolate parametricamente utilizzando le relazioni:

 $a=2L\cos\theta; \quad b=L\sin\theta$

Caratteristiche meccanico-geometriche

Proprietà meccaniche	Proprietà geometriche	Carico
	L = 15 ft = 457.20 cm	
$E_{acciaio} = 30 \ge 10^6 psi = 2109209 Kg/cm^2$	$A = 0.5 in^2 = 3.23 cm^2$	$F = 5000 \ lb = 2.267 \ t$
	<i>Θ</i> = 30°	

Soluzione teorica: Nel nostro caso, la soluzione teorica fornisce:

 $\sigma = 10000 \text{ psi} = 703 \text{ kg/cm}^2$ $\delta = 0.120 \text{ in} = 3.048 \text{ mm}$

Analisi dei risultati (*):

Soluzione teorica	CDSWin	Ratio ^(**)
$\sigma = 703 \ kg/cm^2$	702 kg/cm ²	0.999
δ = 3. 048 mm	3. 043 mm	0.998

Si osserva, anche in questo caso un'ottima conformità tra il risultato di output del programma e quello teorico.

Fig. 4: Colormap deformazioni

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

Stato tensionale di una trave inflessa

Fonte di riferimento: Timoshenko, Rif. [4]: Strength of Material, Part I, Elementary Theory and Problems, pg. 98, Pb. 4

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: Una trave a doppio T, con sezione trasversale di area A, è isostaticamente vincolata mediante due vincoli semplici, come mostrato in fig. 1. Il sistema così descritto viene sottoposto, in corrispondenza delle estremità a sbalzo, all'azione di due carichi uniformemente distribuiti di intensità w.

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Obiettivo: Trascurando il peso dell'asta, perché irrilevante rispetto alle forze in gioco, determinare sia il valore della tensione σ_{MAX} , sia il valore dell'abbassamento δ in corrispondenza della mezzeria (nodo 3).

Modello di calcolo: Per la modellazione della struttura assegnata è sufficiente inserire 5 nodi e suddividere, quindi, l'asta in 4 elementi.

Proprietà meccaniche	Proprietà geometriche	Carico
	l =240 in = 609. 6 cm	
	a =120 in = 304. 8 cm	
$E=30 \ge 10^6 psi=2109209 Kg/cm^2$	h = 30 in = 76.2 cm	w = 10000 lb/ft =14.88 t/m
	$A = 50.65 in^2 = 326.77 cm^2$	
	$I_z = 7892 \ in^4 = 328489.8 \ cm^4$	
	$W_z = I_z / (h/2) = 8621.7 \ cm^3$	

Caratteristiche meccanico-geometriche

Soluzione teorica: Nel nostro caso, la soluzione teorica fornisce:

 $\sigma = 11400 \text{ psi} = 802 \text{ kg/cm}^2$ $\delta = 0.182 \text{ in} = 4.623 \text{ mm}$

Analisi dei risultati (*):

Soluzione teorica	CDSWin	Ratio ^(**)
$\sigma = 802 \ kg/cm^2$	802 kg/cm ²	1. 000
δ = 4.623 mm	4.634 mm	1. 002

Si osserva, anche in questo caso un'ottima conformità tra il risultato di output del programma e quello teorico.

Fig. 3: Colormap deformazioni

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

Stato tensionale di una trave inflessa

Fonte di riferimento: Cremonese, Rif. [10]: Manuale Ingegneria Civile, ESAC, SEZ. I pag. 82 e succ.

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: La struttura mostrata in fig. 1 consiste in una trave di sezione circolare, incastrata in corrispondenza del primo estremo e vincolata mediante un carrello in corrispondenza del secondo. La trave descritta è soggetta all'azione di un carico q uniformemente distribuito per tutta la sua lunghezza.

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Obiettivo: Trascurando il peso dell'asta, perché irrilevante rispetto alle forze in gioco, determinare il valore del momento flettente M_A in corrispondenza dell'incastro e la reazione del carrello V_B .

Modello di calcolo: Per la modellazione della struttura assegnata è sufficiente inserire 3 nodi e suddividere, quindi, l'asta in 2 elementi.

Caratteristiche meccanico-geometriche

Proprietà meccaniche	Proprietà geometriche	Carico
$E=30 \ge 10^6 psi=2109209Kg/cm^2$	<i>d</i> =1.5 <i>in</i> = 3. 81 <i>cm</i>	q = 100 pd / in =1. 784 t/m
	<i>l</i> =20 <i>in</i> = 50. 8 <i>cm</i>	

Soluzione teorica: Nel nostro caso, la soluzione teorica fornisce:

$$V_B = \frac{3}{8}ql = 750 \ pd = 340.19 \ Kg;$$

M (z) = $\frac{ql^2}{8} \left(3\frac{z}{l} - 4\frac{z^2}{l^2} \right);$ da cui si ottiene: $M_A = 5000 \ in \ pd = 0.058tm$

Analisi dei risultati (*):

Soluzione teorica	CDSWin	Ratio ^(**)
V _B =340. 19 Kg;	340 kg	1.000
$M_A = 0.058 \ tm$	0.058 tm	1.000

Si osserva, anche in questo caso un'ottima conformità tra il risultato di output del programma e quello teorico.

Fig. 3, Colormap deformazioni

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

CDSWin Manuale di Verifica

Test di verifica nº 7

Test di verifica n•7

Sistema piano di aste sospese (2)

Fonte di riferimento: W. Nash, Rif.[5]: Strength of Material, pg. 28-29, problem n. 2.3

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: Una barra infinitamente rigida è sospesa mediante il sistema di aste mostrato nella figura. Le due aste più esterne sono realizzate in acciaio, mentre quella interna è in rame. Le tre aste, per $z = L_2$, vengono vincolate con un incastro.

Obiettivo: Trascurando il peso delle barre determinare lo sforzo in ciascuna delle aste verticali.

Modello di calcolo: Per la rappresentazione della struttura è sufficiente inserire n° 8 nodi, in corrispondenza sia degli estremi delle aste che dei punti di applicazione delle forze F, suddividendo così il sistema in un insieme di 7 aste.

a	•	. • 1
('aratteristiche	<i>mercanica_gea</i>	metriche
Curaneristiche	meecunico sco	meen tente.

Proprietà meccaniche	Proprietà geometriche	Carico
$E_{acciaio} = 30 \ge 10^6 \text{ psi} = 2109209 \text{ Kg cm}^2$	$L_1 = 7 \ ft = 213.36 \ cm$	$F = 12000 \ lb = 5.44 \ t$
$E_{rame} = 17 \text{ x } 10^6 \text{ psi} = 1195218 \text{ Kg/cm}^2$	$L_2 = 10 ft = 304.80 cm$	
	$A_{acciaio} = 0.50 \ in^2 = 3.2258 \ cm^2$	
	$A_{rame} = 1.50 \ in^2 = 9.6774 \ cm^2$	

Soluzione teorica: Le condizioni di simmetria impongono che le forze interne che insorgono in ciascuna delle due barre di acciaio siano uguali e pertanto, dalla statica rimane una sola equazione:

$$\sum F_{v} = 2P_{st} + P_{cu} - 2F = 0; \ (1)$$

La (1) contiene due incognite e dunque il problema risulta staticamente indeterminato, ma ricordando che:

$$\Delta = \frac{PL}{AE}$$

Fig. 3: Diagramma di corpo libero

ed imponendo che sia l'asta di rame che quelle in acciaio subiscano il medesimo allungamento, troviamo:

$$\frac{P_{st}L}{A_{st}E_{st}} = \frac{P_{cu}L}{A_{cu}E_{cu}} \quad \text{da cui:} \quad P_{st} = 0.588 P_{cu} (2)$$

la (2) insieme alla (1) fornisce:

 $R_5 = R7 = 6485 \ lb = 2.94 \ t$ $R_6 = 11029 \ lb = 5.00 \ t$

Analisi dei risultati (*):

Soluzione teorica	CDSWin	Ratio (**)
$R_5 = R7 = 2.94 t$	2.94 t	1.000
$R_6 = 5.00 t$	5.00 t	1.000

Fig. 4: Colormap sforzo normale

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

Test di verifica n[•]8

Sistema piano di aste sospese (3)

Fonte di riferimento: Timoshenko, Rif. [4]: Strength of Material, Part I, Elementary Theory and Problems, pg. 30, problem 9

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: Una barra infinitamente rigida è sospesa mediante il sistema di aste mostrato nella figura. La struttura così definita viene sottoposta ad un gradiente termico ΔT ed all'azione di un carico concentrato Q. Per z =L₂, le aste verticali vengono vincolate con un incastro.

Obiettivo: Trascurando il peso delle barre determinare gli sforzi in ciascuna delle aste verticali.

Modello di calcolo: Per la rappresentazione della struttura è sufficiente inserire, in corrispondenza sia degli estremi delle aste che del punto di applicazione delle forza Q, n° 6 nodi e quindi suddividere il sistema in un insieme di 5 aste.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	Carico
$E_{acciaio} = 30 \text{ x } 10^6 \text{ psi} = 2109209 \text{ Kg/ cm}^2$	$L_1 = 20 in = 50.8 cm$	$Q = 4000 \ lb = 1.81436 \ t$
$\alpha_{acciaio} = 70 \ x \ 10^{-6} \circ F^{-1}$	10 in= 25.4 cm	$\Delta T = 10^{\circ}F$
$E_{rame} = 16 \ge 10^6 psi = 1124911 Kg/cm^2$	$A = 0.10 \ in^2 = 0.64516 \ cm^2$	
$\alpha_{rame} = 92 \ x \ 10^{-7} \ ^{-1}$		

Soluzione teorica: Partendo dalla classica relazione:

$$\mathbf{F} = \mathbf{K} \times \mathbf{S}$$

e considerando che:

$$F = Q + 2 \times (\alpha_{rame} \times \Delta T) \times E_{rame} \times A + (\alpha_{acciaio} \times \Delta T) \times E_{acciaio} \times A$$
$$K = 2 \times (E_{rame} \times A)/L + (E_{acciaio} \times A)/L$$

CDSWin Manuale di Verifica

è facile ottenere:

$$\begin{split} N_{rame} &= 681,7 \text{ Kg} \\ N_{acciaio} &= 450,9 \text{ Kg} \end{split}$$

Analisi dei risultati (*):

Soluzione teorica	CDSWin	Ratio (**)
$N_{rame} = 681,7 \ Kg$	$682 \ kg/cm^2$	1,000
$N_{acciaio} = 450,9 \ Kg$	451 kg/cm ²	1,000

Osservazioni : Poiché in *CDSWin* per le aste generiche è possibile definire un solo coefficiente di dilatazione termica α , per inserire il carico termico proposto nell'esercizio si è reso necessario imporre variazioni termiche differenti per le due tipologie di aste in esame secondo la relazione:

$$F_{termica-i} = \Delta L \times E_i A/L = L \times \alpha_i \times \Delta T \times E_i A/L = (\alpha_i \Delta T) \times E_i A$$

Da quanto esposto ne seguono i due seguenti carichi termici:

$$\Delta T_{acciaio} = 70 \ ^{\circ}C$$
$$\Delta T_{rame} = 9.2 \ ^{\circ}C$$

Inoltre, il prodotto ΔT_i è stato opportunamente dimensionato in modo che il risultato finale fosse numericamente coerente con i dati assegnati. Questo perché il programma *CDSWin*, in caso di analisi termica, provvede a moltiplicare il carico termico inserito per il coefficiente di dilatazione termica α , presente nei parametri generali relativi all'analisi termica, e posto pari a 1×10^{-5} .

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

Telaio piano

Fonte di riferimento: Timoshenko, Rif. [4]: Strength of Material, Part I, Elementary Theory and Problems, pg. 188-191

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: Un telaio, staticamente indeterminato, è costituito da tre aste ed soggetto all'azione di una forza concentrata P applicata nella mezzeria del traverso. I due ritti vengono vincolati al suolo mediante incastri.

Obiettivo: Trascurando il peso delle aste determinare la forza reattiva verticale in corrispondenza dei nodi 1 e 5.

Modello di calcolo: Per modellare correttamente la struttura è necessario inserire 5 nodi e 4 aste. Il nodo centrale n 3 viene inserito per consentire l'input della forza concentrata.

Per quanto riguarda la condizione di vincolo relativa ai nodi 1 e 5 vengono bloccati tutti i g.d.l.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	Carico
	L = 120 in = 3.04 m	
$E_{acciaio} = 30 \ge 10^6 \ psi = 2109209 \ Kg \ cm^2$	h=100 in= 2.54 m cm	$P=1000 \ lb = 0.45 \ t$
	$A_{traverso} = 8 in^2 = 51.61 cm^2$	
	$A_{ritto} = 4 in^2 = 25.80 cm^2$	

Soluzione teorica: La soluzione teorica fornisce:

V = 500 pounds = 0.225 t

Analisi dei risultati (*):

Soluzione teorica	CDSWin	Ratio ^(**)
V= 0.225 t	0.225 t	1.000

^{(*):} vedasi nota introduttiva relativa alla conversione delle unità di misura.

^{(**):} per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

<u>Travatura reticolare piana</u>

Fonte di riferimento: Tuma, J.J., Munsi, R.K., Rif.[6]: Theory and Problems of Advanced Structural Analisys, Shaums's Outline Series, McGraw-Hill, pg. 257

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: La travatura reticolare piana riportata nella figura è costituita da 9 aste ed è vincolata mediante una cerniera ed un carrello. La struttura viene sottoposta all'azione simultanea dei carichi nodali P_x e P_z .

Obiettivo: Trascurando il peso delle aste determinare gli spostamenti nodali associati alla configurazione di carico assegnata.

Modello di calcolo: In fig.2 viene riportata la rappresentazione agli elementi finiti della travatura piana in oggetto, le coordinate nodali vengono definite nel sistema di riferimento globale.

La struttura è costituita dall'unione di otto elementi in legno ed in corrispondenza dei nodi 1 e 4 vengono inseriti due vincoli appoggio. Inoltre, per tutti i nodi appartenenti al telaio, le traslazioni e le rotazioni fuori dal piano contenente la struttura vengono bloccate.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	Carico
	$L_1 = 20 ft = 6.096 m$	$P_x = 20 \ Kips = 9.07 \ t$
$E=30 \ge 10^4 Kips-ft^2/ft^2=146473 Kg/cm^2$	h=15 ft=4.572 m	$P_z = 10 \ Kips = 4.535 \ t$
	$A = 1 ft^2 = 929.03 cm^2$	

Soluzione teorica:

Per carichi assiali la tensione normale è fornita dalla relazione:

$$\sigma = \frac{P}{A};$$

dove P rappresenta la forza assiale ed a l'area della sezione trasversale. Nelle condizioni descritte per il sistema assegnato, la deformazione della generica asta si ottiene dalla:

$$\Delta = \frac{PL}{AE};$$

Analisi dei risultati (*):

Nodi	Soluzione teorica	CDSWin	Ratio (***)
1	0	0	1.000
2	0.451 mm	0.451 mm	1.000
3	0.902 mm	0.903 mm	1.001
4	1.128 mm	1.129 mm	1.001
5	0.914 mm	0.913 mm	0.999
6	1.094 mm	1.094 mm	1.000

Spostamenti x-dir.

Spostamenti z-dir.

Nodi	Soluzione teorica	CDSWin	Ratio
1	0	0	1.000
2	-1.335 mm	-1.335 mm	1.000
3	-0.762 mm	-0.761 mm	0.999
4	0	0	1.000
5	-1.335 mm	-1.335 mm	1.000
6	-0.634 mm	-0.634 mm	1.000

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

Pipe-line soggetta a carico termico

Fonte di riferimento: Seely, F. B., and Smith, J.O., Rif. [7]: "Advanced Mechanics of Materials", Second Edition, John Wiley and Sons, 1955, pages 494-497

Tipo di analisi: Analisi Statica Lineare Termica

Schema di calcolo: Lo studio dell'esercizio che segue consente di valutare la variazione di stato tensionale che si genera nella struttura in fig. 1 per effetto dell'azione di un gradiente termico ΔT .

Il sistema oggetto dello studio è costituito dall'insieme di tre aste di sezione circolare cava, ciascuna delle quali risulta soggetta ad un variazione termica.

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Obiettivo: Trascurando il peso delle aste determinare le reazioni vincolari in corrispondenza degli estremi vincolati.

Modello di calcolo: Il modello viene schematizzato utilizzando tre aste e quattro nodi. La condizione di incastro viene realizzata bloccando tutti i g.d.l. in corrispondenza dei nodi 1 e 4.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	Carico
$E_{acciaio}$ =26.4 x 10 ⁶ psi =1856104 Kg/cm ²	L=240 in = 6.096 m	
$\alpha = 7.26744 \times 10^{-6} \circ F^{-1}$	$d_e = 12 in = 30.48 cm$	$\Delta T = 430^{\circ}F$
	d_i = 10.25 in=26. 03 cm	
	$A = 30.58 \ in^2 = 197.293 \ cm^2$	

Soluzione teorica: La soluzione dello schema assegnato si ottiene sopprimendo uno dei due vincoli esterni, sostituendo a questo le corrispondenti reazioni incognite ed impostando il seguente sistema di equazioni:

Fig. 3: Schema di risoluzione

$$\frac{7}{12}l^{3}\frac{P_{x}}{EI} - \frac{1}{12}l^{3}\frac{P_{y}}{EI} = \Delta X$$
$$-\frac{1}{2}l^{3}\frac{P_{x}}{EI} - \frac{2}{3}l^{3}\frac{P_{y}}{EI} = \Delta Y$$

da cui, risolvendo, si ottiene:

 $H_1 = H_2 = 8980.47 \ lb = 4.07 \ t$ $T_1 = T_2 = 7755.86 \ lb = 3.51 \ t$ $M_1 = M_2 = 783750 \ lb \ in = 9.028 \ t \ m$

Analisi dei risultati (*):

Fig. 4: Rappresentazione agli elementi finiti

Soluzione teorica	CDSWin	Ratio ^(**)
$H_1 = H_2 = 4.07 t$	4.07 t	1.000
$T_1 = T_2 = 3.52 t$	3.51 t	0. 997
$M_1 = M_2 = 9.03 \ t \ m$	9.02 t m	0. 999

Fig. 4: Colormap deformazioni

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

Trave a mensola soggetta all'azione di un momento torcente concentrato

Fonte di riferimento: NAFEMS, Rif. [8]: Background to Benchmarks, 1993.

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: La trave a mensola della fig. 1, presenta una sezione trasversale a "Z" ed è soggetta, in corrispondenza dell'estremo libero, all'azione di un momento torcente generato dalla presenza di due forze di taglio F concentrare sulle ali. Lo studio di questa struttura mette in evidenza l'effetto della torsione in profili a sezione aperta e pareti sottili.

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Obiettivo: Determinare il valore della tensione normale σ_x per la sezione trasversale posizionata, nel punto A, ad una distanza x=2.5 m dall'origine. Le tensioni normali da lastra variano linearmente lungo lo spessore delle ali, mentre sono costanti lungo lo spessore dell'anima. Le tensioni tangenziali da lastra variano, invece, quadraticamente lungo le ali e linearmente sull'anima .

Modello di calcolo: Per la definizione del modello viene utilizzata una mesh uniforme costituita da 24 elementi e 36 nodi. La condizione d'incastro ad un estremo viene realizzata inserendo un vincolo esplicito tale da bloccare tutti i gradi di libertà dei nodi presenti per x=0.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	Carico
	L =10 m	
$E = 2.1 \times 10^{11} \text{ N/m}^2$	a= 2.5 m	F=0.6 MN
ν= 0.3	<i>b</i> =1.0 <i>m</i>	
	c=2.0 m	
	<i>t</i> =0.1 <i>m</i>	

Soluzione teorica:

La soluzione teorica fornisce:

$$\sigma_{x} = \frac{cb}{2} \frac{b+c}{2b+c} E \mathcal{G}''(x);$$

e per x = 2.5 m si ricava:

 $\sigma_x(x=2.5) = 107.9 \text{ MPa} = 1100.27 \text{ kg/cm}^2$

Analisi dei risultati (*):

Soluzione teorica	CDSWin	Ratio ^(**)
$\sigma_{x} = 1100.27 \ kg/cm^{2}$	1094.44	0.995

Osservazioni: L'analisi condotta evidenzia un'elevata corrispondenza tra il risultato teorico e quello fornito dall'elaborazione.

Il valore della tensione σ_x calcolato in *CDSWin* è la media dei corrispondenti valori $\sigma_{x-superiore}$ e $\sigma_{x-inferiore}$ del punto in esame (nodo 5).

Fig. 1: Colormap tensioni

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.
Trave a mensola a sezione variabile

Fonte di riferimento: Crandall, Rif. [9]: An Introduction to the Mechanics of Solids, McGraw-Hill Book Co., Inc.. New York, NY. 1959.

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: Una trave a mensola di lunghezza l è caratterizzata da una sezione di larghezza t e di altezza variabile, in modo uniforme, da un valore d, in corrispondenza dell'estremo libero, ad un valore pari a 3d, in corrispondenza dell'estremo incastrato. Come mostrato in fig. 1, il sistema così descritto viene sottoposto nell'estremo libero all'azione della forza concentrata F.

Fig. 1: Schema del problema

Obiettivo: Trascurando il peso della trave determinare il valore della tensione σ_{max} in corrispondenza dell'estremo vincolato.

Modello di calcolo: La trave viene schematizzata mediante l'elemento *shell*. La rappresentazione del modello di calcolo comporta la discretizzazione di questo in una mesh di 15 elementi.

Fig. 2: Rappresentazione agli elementi finiti

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	Carico
	L=50 in = 1.27 m	
$E=30 \ge 10^6 psi = 2109209 \ Kg/cm^2$	d=3 in=7.62 cm	$F = 4000 \ lb = 1.81 \ t$
v=0.0	3d= 9 in=22. 86 cm	
	t = 2 in = 5.08 cm	

Soluzione teorica: La soluzione teorica fornisce:

$$\sigma_{max} = 7407 \ psi = 520.76 \ Kg \ / \ cm^2$$

Analisi dei risultati (*):

Soluzione teorica	CDSWin	Ratio ^(**)
520.76 Kg / cm ²	515.02 Kg / cm^2	0.989

Fig. 3: Colormap tensioni

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

^{(**):} per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Lastra rettangolare piana

Fonte di riferimento: A&C - Rif.[3] - Rif.[16]: Analisi e calcolo nº 8, Gen.-Mar. 2002

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: Lo schema in fig. mostra una lastra rettangolare piana semplicemente appoggiata sui 4 vertici soggetta a moto di corpo rigido.

Fig. 1: Schema del problema

Obiettivo: Valutare il comportamento degli elementi bidimensionali sotto la condizione di moto rigido senza deformazioni.

Fig. 2: Rappresentazione agli elementi finiti

Modello di calcolo: Ai fini del calcolo l'elemento è stato suddiviso in 8 sub-elementi in maniera da assicurare che la forma interna sia irregolare. In corrispondenza dei quattro vertici perimetrali sono stati considerati degli appoggi semplici, mentre per tutti i nodi presenti sul contorno non è stato considerato alcun tipo di vincolo.

Test di verifica nº 14

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	
$E=2000000 \ Kg/cm^2$	Larghezza, a=100 cm	
v=0.3	Altezza, b=75 cm	
	Spessore, t=10 cm	

Vengono esaminati, separatamente i risultati relativi a tre diversi casi di studio:

•	Caso 1: moto di corpo rigido in direzione X	$\eta_x = 1 \ cm$
•	Caso 2: moto di corpo rigido in direzione Y	$\eta_y = 1 \ cm$
•	Caso 3: moto di rotazione nel piano xy	$\phi_{xy} = 45^{\circ}$

e per ciascuno di essi si valutano i valori max e min delle componenti delle tensioni

Caso nº1

$\eta_x = 1 \text{ cm}$

Risultati: La soluzione teorica prevede che:

- a) per i moti di corpo rigido tutti gli spostamenti dei nodi interni all'elemento bidimensionale definito risultino uguali a quelli applicati al contorno;
- b) L'elemento deve essere privo di tensioni e di deformazioni:

Utilizzando i dati assegnati, si sono ottenuti i seguenti risultati:

Nodi	Soluzione teorica (mm)	CDSWin (mm)	Ratio ^(*)
1	10.0	10.0	1.000
2	10.0	10.0	1.000
3	10.0	10.0	1.000
4	10.0	10.0	1.000
5	10.0	10.0	1.000
6	10.0	10.0	1.000
7	10.0	10.0	1.000
8	10.0	10.0	1.000
9	10.0	10.0	1.000
10	10.0	10.0	1.000
11	10.0	10.0	1.000
12	10.0	10.0	1.000

Fig. 3: Diagramma degli spostamenti

Fig. 4: Colormap tensioni

Test di verifica nº 14

Caso n[•]2

 $\eta_y = 1 \text{ cm}$

Risultati: Idem caso 1);

Utilizzando i dati assegnati, si sono ottenuti i seguenti risultati:

Nodi	Soluzione teorica (mm)	CDSWin (mm)	Ratio ^(*)
1	10.0	10.0	1.000
2	10.0	10.0	1.000
3	10.0	10.0	1.000
4	10.0	10.0	1.000
5	10.0	10.0	1.000
6	10.0	10.0	1.000
7	10.0	10.0	1.000
8	10.0	10.0	1.000
9	10.0	10.0	1.000
10	10.0	10.0	1.000
11	10.0	10.0	1.000
12	10.0	10.0	1.000

Caso n•3

 $\phi_{xy}=45^\circ$

Risultati: La soluzione teorica prevede che:

a) per i moti di corpo rigido tutti gli spostamenti dei nodi interni all'elemento bidimensionale definito risultino coerenti con quelli applicati al contorno, e quindi la forma rettangolare dell'elemento deve essere mantenuta anche dopo aver applicato la rotazione;

Utilizzando i dati assegnati, si sono ottenuti i seguenti risultati:

(*): per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Flessione in una piastra circolare

Fonte di riferimento: Cremonese, Rif. [10]: Manuale Ingegneria Civile, ESAC, SEZ. II pag. 114 e succ.

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: Una piastra circolare sottile di raggio *a* e spessore *t* è soggetta a diverse condizioni di vincolo e di carico.

Fig. 1: Schema del problema

Obiettivo: Determinare l'abbassamento w in corrispondenza del centro della piastra per ciascuno dei seguenti casi:

- **a**) Carico uniformemente distribuito q_0 e contorno incastrato;
- b) Carico concentrato P in corrispondenza del centro della piastra e contorno incastrato;
- c) Carico uniformemente distribuito q_0 e contorno semplicemente appoggiato;

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	Carico
$E=2100000 \ Kg/cm^2$	a =1.5 m	P = 2 t
ν= 0.3	<i>t</i> =0.03 <i>m</i>	$q_0 = 10 t/m^2$

Modello di calcolo: Nei tre casi oggetto dello studio il modello di calcolo viene ottenuto discretizzando la piastra mediante una mesh costituita dall'insieme di 150 elementi.

Fig. 2: Rappresentazione del modello di calcolo

Caso a):

La piastra circolare incastrata al contorno e sollecitata da un carico uniforme.

Soluzione teorica: E' noto che per questa condizione di carico la funzione abbassamento w(r) assume la seguente forma:

$$w(r) = \frac{q_0 a^4}{64B} \left(1 - \frac{r^2}{a^2} \right)^2; \qquad B = \frac{Et^3}{12(1 - v^2)};$$
$$m_r = -\frac{q_0 a^2}{16} \left[\frac{r^2}{a^2} (3 + v) - 1 - v \right];$$
$$m_v = -\frac{q_0 a^2}{16} \left[\frac{r^2}{a^2} (1 + 3v) - 1 - v \right];$$

Analisi dei risultati:

Soluzione teorica	CDSWin	Ratio ^(*)
$w_{max} = w(r=0) = 15.23 mm$	15. 49 mm	1.017

Caso b):

La piastra circolare incastrata al contorno e sollecitata da una forza concentrata nel centro;

Soluzione teorica: E' noto che per questa condizione di carico la funzione abbassamento w(r) assume la seguente forma:

$$w(r) = P \frac{a^2}{16\pi B} \left(2 \frac{r^2}{a^2} \ln \frac{r}{a} - \frac{r^2}{a^2} + 1 \right); \qquad B = \frac{Et^3}{12(1 - v^2)};$$
$$m_r = -P \frac{1}{4\pi} \left[1 + (1 + v) \ln \frac{r}{a} \right];$$
$$m_v = -P \frac{1}{4\pi} \left[1 + (1 + v) \ln \frac{r}{a} \right];$$

Analisi dei risultati:

Soluzione teorica	CDSWin	Ratio
$w_{max} = w(r=0) = 1.725 mm$	1.780 mm	1.032

Test di verifica nº 15

Caso c):

La piastra circolare appoggiata al contorno e sollecitata da un carico uniforme;

Soluzione teorica: E' noto che per questa condizione di carico la funzione abbassamento w(r) assume la seguente forma:

$$w(r) = \frac{q_0 a^4}{64B} \left(1 - \frac{r^2}{a^2} \right)^2 \left(\frac{5 + v}{1 + v} - \frac{r^2}{a^2} \right); \qquad B = \frac{Et^3}{12(1 - v^2)};$$
$$m_r = \frac{q_0 a^2}{16} \left(3 + v \right) \left(1 - \frac{r^2}{a^2} \right);$$
$$m_v = \frac{q_0 a^2}{16} \left[3 + v - (1 + 3v) \frac{r^2}{a^2} \right]$$

Analisi dei risultati:

Soluzione teorica	CDSWin	Ratio
$w_{max} = w(r=0) = 62.09 mm$	65. 247 mm	1.051

^{(*):} per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

La piastra rettangolare incastrata al contorno e soggetta ad un carico uniformemente ripartito

Fonte di riferimento: Cremonese: "Manuale di ingegneria civile" Ed. 1982, pg. 113.

Tipo di analisi: Analisi Statica Lineare

Schema di calcolo: Una piastra rettangolare, di larghezza a e lunghezza b, ha uno spessore costante h ed è incastrata lungo i 4 lati. Il carico applicato consiste in una pressione q_0 uniformemente ripartita sull'intera superficie.

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	Carico
$E = 1000000 \ Kg/cm^2$	a =100 cm	
ν= 0.2	<i>b</i> =160 <i>cm</i>	$q_0 = 1 t/m^2$
	$h = 1 \ cm$	

Modello di calcolo: Il modello viene realizzato utilizzando una griglia formata da un totale di 100 elementi. In corrispondenza dei bordi perimetrali della piastra vengono inseriti dei vincoli esterni che, simulando l'incastro, bloccano tutti i gdl.

Obiettivo: Determinare l'abbassamento w_c e lo stato tensionale massimo in mezzeria della piastra.

Soluzione teorica: L'abbassamento cercato è fornito dalla seguente relazione:

$$\mathbf{w}_{c} = C_{f} \frac{q_{0} \times a^{4}}{D}$$

dove:

 $C_{f}(a/b) = 0.0023$ D = rigidezza flessionale della piastra = $\frac{E \times h^{3}}{12(1-v^{2})}$

Con i dati a disposizione:

 $w_c = 2.65 \text{ mm}$

Per quanto attiene allo stato tensionale, si calcolano i momenti in campata:

$$\mathbf{M}_{\mathbf{x}-\mathbf{c}} = (C_1 + \upsilon \cdot C_2) \cdot q_0 \cdot a^2$$
$$\mathbf{M}_{\mathbf{y}-\mathbf{c}} = (C_2 + \upsilon \cdot C_1) \cdot q_0 \cdot a^2$$

dove:

 $C_1 (a/b) = 0.0358$

 $C_2(a/b) = 0.0086$

Con i dati a disposizione:

$$\sigma_{x-c} = 225 \text{ kg/cm}^2$$

 $\sigma_{y-c} = 95 \text{ kg/cm}^2$

Analisi dei risultati ^(*):

Soluzione teorica (mm)	CDSWin (mm)	Ratio (**)
2.650 mm	2.652 mm	1.001
$\sigma_x = 225 \ Kg/cm^2$	227 Kg/cm ²	1.009
$\sigma_{\rm y} = 95 \; Kg/cm^2$	97 Kg/cm ²	1.021

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

(**): per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Carico critico di una trave piana

Fonte di riferimento: Qualsiasi testo di Scienza delle Costruzioni

Tipo di analisi: Non linearità geometrica

Schema di calcolo: Una trave ad asse rettilineo è caratterizzata da una sezione HEA100 e da una lunghezza l. Il sistema così descritto, variamente vincolato, viene sottoposto all'azione di un carico assiale P diretto lungo l'asse della trave.

Modello di calcolo: Per la rappresentazione del sistema si procede alla suddivisione dell'asta in 4 elementi. Alle estremità vengono inseriti vincoli esterni espliciti atti a simulare esclusivamente i movimenti consentiti nel piano dal vincolo considerato.

Obiettivo: Con riferimento alla struttura assegnata determinare il valore del carico critico per ciascuna delle seguenti condizioni di vincolo assegnate.

- *a*. Trave incastrata alla base e libera in testa;
- **b.** Trave incernierata alla base e con un carrello in testa;
- c. Trave incastrata alla base e con un carrello in testa;
- *d.* Trave incastrata alla base e con un incastro scorrevole in testa;

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche
	l = 3 m
$E=2100000 \ Kg/ \ cm^2$	h = 96 mm
	<i>b</i> = 100 mm

Caso a):

Trave incastrata alla base e libera in testa

Fig. 1: Schema del problema e del modello di calcolo

Soluzione teorica: Per una trave piana semplicemente incastrata ad un estremo l'espressione che fornisce il carico critico teorico è data da:

$$P_{cr} = \frac{\pi^2 EI}{\left(2L\right)^2}$$

nel caso in esame:

 P_{cr} = 7.703 Kg

Analisi dei risultati:

Soluzione teorica	CDSWin	Ratio ^(*)
Pcr= 7. 703 Kg	7. 704 Kg	1.000

Caso b):

Trave incernierata alla base e con un carrello in testa

Fig. 2: Schema del problema e del modello di calcolo

Soluzione teorica: Per la trave piana riportata in fig.3 l'espressione che fornisce il carico critico è data da:

$$P_{cr} = \frac{\pi^2 EI}{L^2}$$

nel caso in esame:

 $P_{cr} = 30.815 \text{ Kg}$

Analisi dei risultati:

Soluzione teorica	CDSWin	Ratio ^(*)
Pcr= 30.815 Kg	30.830 Kg	1.001

Caso c):

Trave incastrata alla base e con un carrello in testa;

Fig. 3: Schema del problema e del modello di calcolo

Soluzione teorica: Per la trave piana riportata in fig.3 l'espressione che fornisce il carico critico è data da:

$$P_{cr} = \frac{\pi^2 EI}{\left(0.699L\right)^2}$$

nel caso in esame:

 $P_{cr} = 63.068 \text{ Kg}$

Analisi dei risultati:

Soluzione teorica	CDSWin	Ratio ^(*)
Pcr= 63.068 Kg	63.170 Kg	1.002

Caso d):

Trave incastrata alla base e con un incastro scorrevole in testa

Fig. 4: Schema del problema e del modello di calcolo

Soluzione teorica: Per la trave piana riportata in fig.3 l'espressione che fornisce il carico critico è data da:

$$P_{cr} = \frac{\pi^2 EI}{\left(0.5L\right)^2}$$

nel caso in esame:

P_{cr}= 123.260 Kg

Analisi dei risultati:

Soluzione teorica	CDSWin	Ratio ^(*)
Pcr= 123.260 Kg	124.180 Kg	1.007

(*): per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Frequenze naturali di vibrazione in una trave appoggiata- appoggiata

Fonte di riferimento: Ray, W. Clough, Joseph Penzien, Rif. [11]: Dynamics of Structures, Mc Graw-Hill Book Company, cap. 18

Tipo di analisi: Analisi Dinamica Modale

Schema di calcolo: : Una trave a sezione rettangolare è isostaticamente vincolata mediante due appoggi semplici ed è soggetta esclusivamente all'azione del proprio peso.

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Obiettivo: Per il sistema assegnato determinare i primi tre modi di vibrare.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	Carico
$E=2100000 \ Kg/cm^2$	$a = 30 \ cm$	$P_p = 706.5 \ Kg/m$
	L = 10 m	

Modello di calcolo: Il sistema assegnato viene suddiviso in un insieme di 20 elementi. In corrispondenza del nodo iniziale e di quello finale vengono inseriti due vincoli esterni espliciti che bloccano tutti i gdl ad eccezione della rotazione attorno all'asse y. Per i restanti nodi vengono consentite, esclusivamente, la rotazione attorno all'asse y e le traslazioni nel piano.

Analisi dei risultati :

Soluzione teorica	CDSWin	Ratio ^(**)
$\omega_1 = 43.79$ rad/sec	43.79 rad/sec	1.000
$\omega_{\mathcal{Z}} = 175.16$ rad/sec	175.15 rad/sec	1.000
$\omega_{\mathcal{B}} = 394.11$ rad/sec	394.06 rad/sec	1.000

(**): per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Frequenze naturali di vibrazione in una trave a mensola

Fonte di riferimento: Ray, W. Clough, Joseph Penzien, Rif. [11]: Dynamics of Structures, Mc Graw-Hill Book Company, cap. 1

Tipo di analisi: Analisi Dinamica Modale

Schema di calcolo: : Si consideri la trave prismatica dell'esercizio precedente sostituendo lo schema statico in modo tale che risulti incastrata ad un estremo e libera all'altro.

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Obiettivo: Per il sistema assegnato determinare i primi tre modi di vibrare.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche	Carico
$E=2100000 \ Kg/cm^2$	$a = 30 \ cm$	$P_p = 706.5 \ Kg/m$
	L = 10 m	

Modello di calcolo: Il sistema assegnato viene suddiviso in un insieme di 20 elementi. In corrispondenza del nodo iniziale viene inserito un vincolo esterno tale da bloccare tutti i gdl. Per i restanti nodi vengono consentite, esclusivamente, la rotazione attorno all'asse y e le traslazioni nel piano

Analisi dei risultati :

Soluzione teorica	CDSWin	Ratio ^(**)
$\omega_1 = 15.60$ rad/sec	15.58 rad/sec	0.999
$\omega_{\mathcal{Z}} = 97.76$ rad/sec	97.37 rad/sec	0.996
$\omega_{\mathcal{B}} = 273.76$ rad/sec	271.94 rad/sec	0.993

(**): per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Frequenza naturale di vibrazione di un oscillatore semplice

Fonte di riferimento: Thomson, Rif. [12]: Vibration Theory and Applications, pg. 6, ex. 1.2-2

Tipo di analisi: Analisi Dinamica Modale

Schema di calcolo: Si consideri il sistema dinamico ad un solo gdl mostrato nella fig. 1. La massa totale di questo sistema è concentrata ad un estremo della molla, mentre l'altro viene bloccato. La resistenza elastica allo spostamento è fornita dalla molla, priva di massa e di rigidezza K.

> ΔZ 1 SDOF Ø₩ 2 Κ 1 x

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Obiettivo: Per il sistema assegnato valutare la frequenza naturale di vibrazione.

Modello di calcolo: Per la rappresentazione del modello di calcolo è sufficiente inserire 2 nodi in corrispondenza degli estremi della molla. La lunghezza della molla è arbitraria ed alla massa w viene consentito solo 1 gdl lungo la direzione dell'asse della molla.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Carico
K=48 lb /in= 857.18 Kg/m	9.81 m/s ²
$w = 2.5 \ lb = 0.00113 \ t$	

Soluzione teorica:

Utilizzando i dati assegnati, si trova:

 ω =13.701 cycle/sec = 86.085 rad/sec

Analisi dei risultati ^(*):

Soluzione teorica	CDSWin	Ratio (**)
$\omega = 86.085$ rad/sec	86. 255 rad/sec	1.001

Osservazioni: Per simulare la molla, in *CDSWin*, si è reso necessario inserire un'asta di caratteristiche meccanicogeometriche tali che la rigidezza risultante fosse identica a quella assegnata. Ricordando che:

K = EA/L

ponendo:

 $A = 100 \text{ cm}^2$ L = 100 cm,

e considerando K=857.18 Kg/m, si trova:

 $E = KL/A = 8.57 \text{ kg/cm}^2$

Per simulare la presenza della massa si è inserita una forza concentrata in corrispondenza del nodo 2, diretta verso il basso lungo la direzione dell'asse z e di entità pari alla massa w considerata

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

^{(**):} per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Frequenza naturale di vibrazione di un oscillatore con due masse in serie

Tipo di analisi: Analisi Dinamica Modale

Schema di calcolo: Si consideri l'oscillatore a due gradi di libertà mostrato in fig.1; esso risulta costituito da 3 molle, prive di massa, di rigidezza K_1 , K_2 e $K_3 = K_1$, e da due masse concentrate $m_1 = m_2 = m$ poste in serie.

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Obiettivo: Per il sistema assegnato valutare la frequenza naturale di vibrazione.

Modello di calcolo: Per la rappresentazione del modello di calcolo è sufficiente inserire 4 nodi, 2 in corrispondenza degli estremi della molla e 2 in corrispondenza delle masse concentrate. La lunghezza delle molle è arbitraria ed alle masse m_1 ed m_2 viene consentito solo 1 gdl lungo la direzione dell'asse delle molle.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Carico
$K_1 = K_3 = K = 200 \ Kg/cm$	
$K_2 = 4 K = 800 Kg/cm$	$g = 981 \text{ cm/s}^2$
$m_1 = m_2 = 1Kg \cdot s^2/cm$	

Nel caso in esame utilizzando i dati assegnati, si trova:

ω₁= 14. 142 rad/sec ω₂= 42. 426 rad/sec

Analisi dei risultati:

Soluzione teorica	CDSWin	Ratio	
14. 142 rad/sec	14.142 rad/sec	1.000	
42. 426 rad/sec	42.426 rad/sec	1.000	

Osservazioni: Per simulare le tre molle, in CDSWin, si è reso necessario inserire tre aste di caratteristiche meccanicogeometriche tali che le rispettive rigidezze risultanti fosse identiche a quelle assegnate. Ricordando che:

K=EA/L

si è posto:

 $A_1 = A_2 = A_3 = A = 100 \text{ cm}^2$

 $L_1 = L_2 = L_3 = L = 100$ cm,

e considerando K₁= K₃=K= 200 Kg/cm, si trova:

 $E_1 = E_3 = E = KL/A = 200 \text{ kg/cm}^2$

analogamente, considerando $K_c = 800$ Kg/cm, si trova:

 $E = 800 \text{ kg/cm}^2$

Per simulare la presenza delle due masse, si sono inserite due forze concentrate in corrispondenza dei nodi 2 e 3, entrambe dirette verso il basso lungo la direzione dell'asse z e di entità pari alla massa m considerata

(**): per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Analisi in frequenza di una piastra rettangolare

Fonte di riferimento: Blevins, Robert D., Rif. [13]:"Formulas for Natural Frequency and Mode Shape," Van Nostrand Reinhold Company, 1979, pg. 258.

Tipo di analisi: Analisi Dinamica Modale

Schema di calcolo: Una piastra rettangolare, di larghezza a e lunghezza b, ha uno spessore costante t ed è semplicemente appoggiata lungo i 4 lati.

79	80	81	84	85	86	89	90	91	94	95	96
13	77	78	14	82	83	15	87	88	16	9Z	93
59	60	61	64	65	66	69	70	71	74	75	76
,	57	58	10	6Z	63	11	67	68	1Z	7Z	73
39	40	41	64	45	46	49	50	51	54	55	56
5	37	38	6	42	43	7	47	48	*	52	53
19	20	21	24	25	26	29	30	31	34	35	36
1	17	18	8	22	23	з	27	28		32	33

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Obiettivo: Analizzare il comportamento dinamico dell'elemento piastra.

Modello di calcolo: Per la schematizzazione del modello di calcolo fa riferimento ad una mesh formata da 96 elementi, ognuno composto da una mesh (3×3) . In corrispondenza dei bordi perimetrali vengono inseriti dei vincoli che simulano gli appoggi.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche		
$E = 30 \times 10^6 \text{ psi} = 2109209 \text{ Kg/cm}^2$	<i>a</i> = 45 <i>in</i> =114.3 <i>cm</i>		
v=0.3	<i>b</i> =30 <i>in</i> = 76.2 <i>cm</i>		
$\rho = 7800 \text{ Kg/m}^3$	t = 0.2 in = 0.508 cm		

Utilizzando i dati assegnati, si trova:

$\omega_1 = 30.94$ cycle/sec = 194.30 rad/sec
$\omega_{\mathcal{Z}}$ = 59.49 cycle/sec = 373.59 rad/sec
ω_{β} = 95.18 cycle/sec = 597.73 rad/sec
ω_4 = 107.1 cycle/sec = 672.58 rad/sec
ω ₅ = 123.7 cycle/sec = 776.83 rad/sec

Analisi dei risultati (*):

Soluzione teorica	CDSWin	Ratio ^(**)	
194.30 rad/sec	194.18 rad/sec	0. 999	
373.59 rad/sec	373.00 rad/sec	0. 998	
597.73 rad/sec	596.85 rad/sec	0. 999	
672.58 rad/sec	670.84 rad/sec	0. 997	
776.83 rad/sec	774.02 rad/sec	0. 996	
1075.76 rad/sec	1069.02 rad/sec	0. 994	

Raffittendo la mesh fino a definire una maglia composta da 3456 elementi, si ottengono i seguenti risultati:

Soluzione teorica	CDSWin	Ratio (**)	
194.30 rad/sec	194.24 rad/sec	1.000	
373.59 rad/sec	373.27 rad/sec	0.999	
597.73 rad/sec	597.05 rad/sec	0. 999	
672.58 rad/sec	671.41 rad/sec	0. 998	
776.83 rad/sec	775.05 rad/sec	0. 998	
1075.76 rad/sec	1071.40 rad/sec	0. 996	

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

^{(**):} per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Analisi in frequenza di una piastra sottile romboidale

Fonte di riferimento: Rif. [14]: The STANDARD NAFEMS Benchmarks, TNSB, Rev. 3, 5 October, 1990

Tipo di analisi: Analisi Dinamica Modale

Schema di calcolo: Una piastra sottile romboidale, con i quattro lati uguali di lunghezza L, ha uno spessore costante *h* ed è incastrata lungo il contorno.

Fig. 1: Schema del problema

Fig. 2: Rappresentazione agli elementi finiti

Obiettivo: Analizzare il comportamento dinamico dell'elemento piastra.

Modello di calcolo: Per la schematizzazione del modello di calcolo fa riferimento ad una griglia formata da 192 elementi. In corrispondenza dei bordi perimetrali vengono inseriti dei vincoli incastro.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche	Proprietà geometriche		
$E = 2.0 \ x \ 10^{11} \ N/m^2$	L= 10 m		
v=0.3	h = 0.05 m		
$ ho = 8000 \ Kg/m^3$	<i>a</i> =45°		

Soluzione teorica: Utilizzando i dati assegnati, si trova:

ω_1 = 7. 938 cycle/sec = 49.85 rad/sec
$\omega_{\mathcal{C}}=$ 12. 835 cycle/sec = 80.60 rad/sec
ω_{β} = 17. 941 cycle/sec = 112.70 rad/sec
ω_4 = 19. 133 cycle/sec = 120.15 rad/sec
ω_5 = 24. 009 cycle/sec = 150.77 rad/sec
ω_6 = 27. 922 cycle/sec = 175.35 rad/sec

Analisi dei risultati ^(*):

Soluzione teorica	CDSWin	Ratio (**)
49.85 rad/sec	48,72 rad/sec	0. 977
80.60 rad/sec	79,01 rad/sec	0. 980
112.70 rad/sec	111,12 rad/sec	0. 986
120.15 rad/sec	116,20 rad/sec	0. 967
150.77 rad/sec	148.67 rad/sec	0. 986
175.35 rad/sec	168,50 rad/sec	0. 961

(*): vedasi nota introduttiva relativa alla conversione delle unità di misura.

(**): per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Elemento mensola a sezione costante

Fonte di riferimento: Dati sperimentali

Tipo di analisi: Analisi Statica non Lineare.

Schema di calcolo: Sia dato un pilastro a sezione quadrata, isostaticamente vincolato con un incastro alla base e libero in corrispondenza dell'altro estremo, di cui è nota la distribuzione di armatura all'interno della sezione stessa. La struttura così definita viene sottoposta all'azione di un carico assiale noto ed uno orizzontale, applicato intesta e monotonicamente crescente

Modello di calcolo: Ai fini dell'analisi è sufficiente modellare il sistema come unico elemento monodimensionale. I nodi vengono inseriti agli estremi dell'elemento. In corrispondenza del nodo n°1 si procede all'inserimento di un vincolo esterno di tipo incastro, mentre in corrispondenza del nodo n°2 si inserisce un carico nodale $F_z = -36t$.

Obiettivo: L'analisi si propone di illustrare la non linearità della relazione carico spostamento e, quindi, di verificare il comportamento dell'elemento asta, soggetta all'azione dei carichi gravitazionali ed ad una distribuzione di forze orizzontali monotonicamente crescente, confrontando la soluzione sperimentalmente ottenuta con quella fornita dall'analisi di *CDSWin*.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche cls	Proprietà meccaniche acciaio	Proprietà geometriche
f_{cm} =347 Kg/cm ²	f _y =5000	Larghezza =20 cm
E_c = 333457 Kg/cm ²	$E_s = 2100000 \ kg/cm^2$	Altezza =20 cm
$\mathcal{E}_{cu}=0.0050$		

CDSWin Validazione del codice di calcolo

Test di verifica n°24

Armatura Pilastro				
Armatura // lato superiore2 \$\overline\$ 16				
Armatura // lato inferiore	2 \$ 16			
Armatura trasversale	1 \oplus 6 / 10 cm			

Risultato sperimentale:

La prova di carico condotta sul campione sopra indicato viene effettuata a pressoflessione retta applicando il carico assiale pari a 36 t e poi eseguendo la prova di pushover.

Di seguito viene riportato il risultato sperimentale della prova in esame:

Curva sperimentale

Analisi dei risultati :

Curva di Capacità – Analisi con CDSWin

	Soluzione sperimentale	CDSWin	Ratio
Lateral Force (KN)	45	46,50	1,033
Lateral Displacement (mm)	25	25	1,000

(*): per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Telaio piano

Fonte di riferimento: Università di Roma "La Sapienza" - ECOLEADER PROJECT

Tipo di analisi: Analisi Statica non Lineare.

Schema di calcolo: Sia dato il telaio piano in fig., staticamente indeterminato,. A ciascuna delle travi viene applicato un carico uniformemente distribuito di intensità pari a 8 KN/m ed, in corrispondenza dei nodi, viene aggiunto un carico nodale verticale pari 21.20 KN.

Modello di calcolo: Per modellare correttamente la struttura è necessario schematizzarla come insieme di 6 elementi monodimensionali interconnessi attraverso 6 nodi. Per quanto riguarda, la condizione di vincolo dei nodi alla base si è proceduto all'inserimento di vincoli tipo incastro.

Obiettivo: Il modello, così implementato, viene sottoposto ad un analisi di tipo pushover. Tale analisi si propone di valutare la riposta anelastica del sistema prima descritto soggetta ad una distribuzione di forze monotonicamente crescenti, confrontando la soluzione fornita dalla fonte di riferimento con quella fornita dall'analisi di CDSwin.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche cls	Proprietà meccaniche acciaio	Proprietà geometriche
f_{cm} =200 Kg/cm ²	$f_{yd} = 5500$	Travi =26x40 cm
$E_c = 150000 \ Kg/cm^2$	$E_s = 1974240 \ kg/cm^2$	Pilastri =26x26 cm
$\varepsilon_{cu}=0.004$		

Armatura Pilastri		
	I ordine	II ordine
Armatura // lato superiore	3 \operatorname{14}	3 \oldsymbol{\phi} 12
Armatura // lato inferiore	3 \oldsymbol{4} 14	3 \oldsymbol{\phi} 12
Armatura trasversale	1 \oplus 6 / 20 cm	1 \oplus 6 / 20 cm

Armatura Travi	
Armatura // lato superiore	7 \ 14
Armatura // lato inferiore	4 \oplus 14
Armatura trasversale	1 \oplus 8 / 30 cm

Soluzione:

Curva di capacità FEAT

Analisi dei risultati: L'analisi effettuata conduce ai seguenti principali risultati :

Curva capacità CDSWin

Maximum base	shear	(KN)	90
Dispalcement	(m)		0.09

	Soluzione sperimentale	CDSWin	Ratio
Maximum base shear (KN)	90	91,9	1,021
Displacement (mm)	0.09	0,080	0,888
Tipo di meccanismo	Di piano	Di piano	//

(*): per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

Edificio regolare

Fonte di riferimento: Università di Roma "La Sapienza" - ECOLEADER PROJECT

Tipo di analisi: Analisi Statica non Lineare.

Schema di calcolo: Dato un edificio multipiano regolare se ne vuole analizzare il comportamento in campo non lineare. Lo schema, riportato in fig. 1, rappresenta la pianta di una struttura intelaiata di 4 piani per la quale, a tutte le quote, travi e pilastri hanno dimensioni uguali e, precisamente:

	Sezione (cm x cm)
Pilastri	30 x 60
Travi	30 x 60

L'interpiano è costante per tutta l'altezza dell'edificio e pari a 3.20m.

Modello di calcolo: Il modello di calcolo si ottiene facilmente seguendo lo schema strutturale riportato in fig. 1. Le modalità di input prevedono, dunque, l'inserimento di aste travi e pilastri in modo da ottenere spazialmente la schematizzazione richiesta, che si riporta in fig. 2.

Per l'inserimento dei carichi verticali agenti si è fatto riferimento ai valori riportati nelle seguenti tabelle:

Condizione di carico	kN/m ²
P. Permanente	5.88
P. Tamponature	2.45
Q Variabile	1.96
P. Calcestruzzo	2.45

coeff. riduttivo carichi variabili	coeff. riduttivo contemporaneità carichi variabili
0.3 per abitazioni e uffici	0.8 per piani intermedi
	1 per copertura

Le orditure dei solai sono quelle indicate in fig. 1.

Fig. 2
Obiettivo: L'analisi si propone di valutare la risposta anelastica di un edificio multipiano regolare soggetto ad un'analisi di tipo push-over.

Caratteristiche meccanico-geometriche:

Proprietà meccaniche cls	Proprietà meccaniche acciaio
f_{cm} =335 Kg7cm ²	<i>f</i> _{yk} =5500
$E_c = 158090 \ Kg/cm^2$	$E_s = 2100000 \ kg/cm^2$
$ \boxed{\varepsilon_{cu}=0.0035 travi \ fon.} \boxed{\varepsilon_{cu}=0.0060 travi \ elev.} \boxed{\varepsilon_{cu}=0.0065 pilastri} $	

Sezioni: Con riferimento alla fig. 1 le armature longitudinali di pilastri e travi sono riportate nelle seguenti tabelle:

Pilastri					
	tutte sezioni 30cm x 60cm				
nome	nome armatura // lato corto armatura // lato lungo				
sez.1	<u>6+6 ø16</u>	<u>8+8 ø16</u>			
sez.2	<mark>8+8 <i>ø</i> 16</mark>	<mark>9+9 <i>ø</i> 16</mark>			

Allineamento	Y1	Y2	Y3	Y4	Y5	Y6
X4	sez.1	sez.1	sez.2	sez.2	sez.1	sez.1
X3	sez.2	sez.2	sez.2	sez.2	sez.2	sez.2
X2	sez.2	sez.2	sez.2	sez.2	sez.2	sez.2
X1	sez.1	sez.1	sez.2	sez.2	sez.1	sez.1

30/60	30/60	30/60	30/60	30/60	
19 30/60	30/60	21 30/60	22 30/60	23	24 30/60
30/60	30/60 14 30/60	30/60 15 30/60	30/60 16 30/60	30/60 17 30/60	18 30/60
<u>30/60</u> 7	8	<u>30/60</u> 9	<u>30/60</u> 10	<u>30/60</u> 11	12
30/60	30/60	30/60	30/60	30/60	30/60
<u>30/60</u>	2 30/60	30/60	30/60 4	5 30/60	6

Travi								
	tutte alte con sezi	ioni 30 cm x 60 cm						
nome armatura sup. armatura inf. armatura di pare								
sez.3	<mark>8 φ 16</mark>	<mark>6 </mark>	<mark>3+3 φ 16</mark>					
sez.4	<mark>8 φ 16</mark>	<mark>5 φ 16</mark>	<mark>3+3 </mark>					
sez.5	<mark>5 φ 16</mark>	<mark>3 </mark>	<mark>3+3 φ 16</mark>					
sez.6	<mark>7 </mark>	<mark>3 </mark>	<mark>3+3 </mark>					
sez.7	<mark>6 </mark>	<mark>5 </mark>	3+3 þ 16					
sez.8	9 \oplus 16	9 φ 16	3+3 \operatorname{16}					
sez.9	4 \operatorname{16}	4 φ 16	3+3 \overline{16}					
sez.10	<mark>4 φ 16</mark>	<mark>3 </mark>	<mark>3+3 φ 16</mark>					

Allineamenti // asse X										
allineamento	Y1	Y2	Y2	<i>Y3</i>	<i>Y3</i>	Y4	Y4	¥5	<i>Y5</i>	¥6
X4	sez.3	sez.4	sez.4	sez.5	sez.5	sez.5	sez.5	sez.4	sez.4	sez.3
X3	sez.5	sez.6	sez.6	sez.5	sez.5	sez.5	sez.5	sez.6	sez.6	sez.5
X2	sez.5	sez.6	sez.6	sez.5	sez.5	sez.5	sez.5	sez.6	sez.6	sez.5
X1	sez.3	sez.4	sez.4	sez.5	sez.5	sez.5	sez.5	sez.4	sez.4	sez.3

Allineamenti // asse Y										
allineamento	ıllineamento Y1 Y2 Y3 Y4 Y5 Y6									
X4	sez.7	sez.9	sez.7	sez.7	sez.9	sez.7				
X3	sez.8	sez.10	sez.7	sez.7	sez.10	sez.8				
X3	sez.8	sez.10	sez.7	sez.7	sez.10	sez.8				
X2	sez.8	sez.10	sez.7	sez.7	sez.10	sez.8				
X2	sez.8	sez.10	sez.7	sez.7	sez.10	sez.8				
X1	sez.7	sez.9	sez.7	sez.7	sez.9	sez.7				

Fig. 4

Le armature trasversali sono:

- tutte le travi: staffe $\phi 8$ passo 10 cm
- tutti i pilastri: staffe \operatorname{8} passo 20 cm.

Soluzione: L'analisi effettuata conduce ai seguenti principali risultati :

Fig. 5 – Curva Capacità CDSWIN

CDSWIN	
Maximum base shear (KN)	6830
Dispalcement (cm)	14,1

Fig. 6– Curva Capacità SAP NL

SAP NL				
Maximum base shear (KN) 6100				
Dispalcement (cm)	14			

Fig. 7 – Curva Capacità OPENSEES

OPENSEES					
Maximum base shear (KN) 7500					
Dispalcement (cm)	16				

Analisi dei risultati :

Soluzione	SAP NL	OPENSEES	Var. %
Maximum base shear (KN)	6100	7500	22,9
Displacement (mm)	140	160	14,3

CDSWin Validazione del codice di calcolo

Test di verifica n°26

Soluzione	SAP NL	CDSWIN	Var. %
Maximum base shear (KN)	6100	6830	11,2
Displacement (mm)	140	141	0,70

(*): per *Ratio* si intende il rapporto tra il valore di output fornito dal programma CDSWin ed il valore fornito dal programma oggetto del confronto.

Test di verifica n°27

a) Verifica allo Stato Limite di Esercizio di fessurazione

Tipo di analisi: Verifica a fessurazione per flessione.

Schema di calcolo: Data una sezione resistente in c.a., di geometria ed armature note, soggetta a momento flettente M si vuole determinare l'ampiezza massima delle fessure (S.L.E. di fessurazione).

§§§

Sia data la seguente sezione in c.a.:

$$b = 30 [cm] ; h = 40 [cm] ; c = 3.5 [cm]$$
$$A_{s} = 6\phi_{14} = 9.236 [cm^{2}] ; A_{s}' = 3\phi_{14} = 4.618 [cm^{2}]$$

$$E_s = 2100000 \left[kg \ cm^{-2} \right] ; \quad E_{cm} = 299619 \left[kg \ cm^{-2} \right] ; \quad f_{ct,m} = 22.1 \left[kg \ cm^{-2} \right] ; \quad n = \frac{E_s}{E_c} = 15$$

Si immagini tale sezione soggetta, per le combinazioni di carico frequente e quasi permanente, ai seguenti momenti flettenti:

$$M = \begin{cases} 5625 [kg m] & \text{comb. frequente} \\ 5312 [kg m] & \text{comb. quasi permanente} \end{cases}$$

Per queste sollecitazioni si ricavano le seguenti posizioni dell'asse neutro:

$$x = \begin{cases} 11.97 [cm] & \text{comb. frequente} \\ 11.95 [cm] & \text{comb. quasi permanente} \end{cases}$$

Il calcolo dell'ampiezza delle fessure sarà condotto in accordo a quanto descritto nell'Eurocodice 2 al punto 7.3.4. Secondo quanto riportato nell'EC2, l'ampiezza massima attesa delle fessure è data da:

$$w_k = s_{r,\max} \left(\varepsilon_{sm} - \varepsilon_{cm} \right)$$

dove:

$\varepsilon_{sm} - \varepsilon_{cm}$ = differenza fra le deformazioni medie di acciaio e calcestruzzo $s_{r,max}$ = distanza massima fra le fessure

La determinazione delle deformazioni medie di acciaio e calcestruzzo si effettua in base alle seguente formulazione:

$$\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s - k_t \frac{f_{ct,eff}}{\rho_{p,eff}} \left(1 + \alpha_B \rho_{p,eff}\right)}{E_s} \ge 0.6 \frac{\sigma_s}{E_s}$$

dove:

$$\begin{split} \sigma_s &= \begin{cases} 1869 \left[kg \ cm^{-2} \right] & \text{comb. frequente} \\ 1764 \left[kg \ cm^{-2} \right] & \text{comb. quasi permanente} \end{cases} \\ k_t &= \begin{cases} 0.6 & \text{comb. rara e frequente} \\ 0.4 & \text{comb. quasi permanente} \end{cases} \\ f_{ct,eff} &= f_{ct,m} = \begin{cases} 22.1 \left[kg \ cm^{-2} \right] & \text{comb. frequente} \\ 22.1 \left[kg \ cm^{-2} \right] & \text{comb. quasi permanente} \end{cases} \\ cmb. quasi permanente \end{cases} \\ A_{e,eff} &= b \cdot \min \left\{ 2.5c, \frac{h-x}{3}, \frac{h}{2} \right\} = \left\{ b \cdot \min \left\{ 8.75, 9.34, 20 \right\} & \text{comb. frequente} \\ b \cdot \min \left\{ 8.75, 9.35, 20 \right\} & \text{comb. quasi permanente} \end{cases} \\ &= \left\{ 262.5 \left[cm^2 \right] & \text{comb. frequente} \\ 262.5 \left[cm^2 \right] & \text{comb. frequente} \\ 0.035 & \text{comb. frequente} \\ 0.035 & \text{comb. quasi permanente} \end{cases} \\ \rho_{p,eff} &= \frac{A_s}{A_{c,eff}} = \left\{ \begin{array}{c} 0.035 & \text{comb. frequente} \\ 0.035 & \text{comb. quasi permanente} \end{array} \right. \\ \alpha_B &= \frac{E_s}{E_{cm}} = \frac{2100000}{299619} = 7.009 \end{split}$$

Sostituendo si ottiene:

$$\varepsilon_{sm} - \varepsilon_{cm} = \begin{cases} 6.66 \cdot 10^{-4} & \text{comb. frequente} \\ 6.91 \cdot 10^{-4} & \text{comb. quasi permanente} \end{cases}$$

entrambi non minori di:

$$0.6\frac{\sigma_s}{E_s} = \begin{cases} 5.34 \cdot 10^{-4} & \text{comb. frequente} \\ 5.04 \cdot 10^{-4} & \text{comb. quasi permanente} \end{cases}$$

Test di verifica n°27

La distanza massima fra le fessure, invece, è data da:

$$s_{r,\max} = k_3 \left(c - \frac{\phi}{2} \right) + k_1 k_2 k_4 \frac{\phi}{\rho_{p,eff}}$$

con:

$$k_1 = 0.8$$
 ; $k_2 = 0.5$; $k_3 = 3.4$; $k_4 = 0.425$
 $\phi = \text{diametro dell'armatura} = 1,4 \text{ [cm]}$

Sostituendo si ottiene:

$$s_{r,\max} = 16.284 [cm]$$

Ne consegue, alla fine, che l'ampiezza delle fessure è pari a:

 $w_{k} = s_{r,\max} \left(\varepsilon_{sm} - \varepsilon_{cm} \right) = \begin{cases} 0.108 \left[mm \right] & \text{comb. frequente} \\ 0.113 \left[mm \right] & \text{comb. quasi permanente} \end{cases}$

CDSWin fornisce il seguente tabulato:

STAMPA VERIFICHE S.L.E E.C ELEVAZIONE																					
			FES	s U	RA	ΖI	ONE	2		FR	есс	E				ΤE	NS	IO	NI		
Tilo In fi	Quota Tr In Fi tt	a Combi Fea o Caric lim	au.mm[d cal]	ist 0 mm c	Con C	Com pin	Mf X (t*m)	Mf Y (t*m)	N (t)	Frecce limite	mm calc	Com	Combir Cario	az o 1	σ lim. Kg/cmq	σ cal. Kg/cmq	Co I ne	Com	b Mf (t*	X Mf Y m) (t*m)	N (t)
1	2,00	Rara											Rara	cla	120,0	87,2	3	1	6,4	0,0	0,0
2	2,00	Freq 0,4	0,108 1	63	3 1	L 1	5,6	0,0	0,0				Raza	fer	3600	2131	3	1	6,4	0,0	0,0
		Perm 0.3	0.113 1	63	3 1	1	5.3	0.0	0.0				Perm	cla	90.0	73.5	3	1	5.3	0.0	0.0

Dal confronto si evidenzia la corrispondenza dei risultati:

	Soluzione teorica	CDSWin	Ratio ^(*)
Comb. frequente	0,108 [mm]	0,108 [mm]	1.000
Comb. quasi permanente	0,113 [mm]	0,113 [mm]	1.000

Nota

In relazione al tabulato fornita da **CDSWin**, si osservi che per la combinazione di carico RARA la corrispondente riga delle fessure risulta vuota. Questo significa che per tale combinazione di carico la verifica non è stata effettuata per scelta dell'operatore.

Nel caso, invece, che i valori fossero tutti nulli (pari a zero) allora l'ampiezze delle fessure è stata calcolata ma è nulla. In questa evenienza, comunque, non sarà nullo il valore del momento flettente.

(*): per *Ratio* si intende il rapporto tra il valore di output fornito dal programma, al termine dell'elaborazione, ed il valore fornito dalla soluzione teorica.

b) Determinazione del momento e del taglio resistenti per una sezione in c.a.

b1) CALCOLO DEL MOMENTO RESISTENTE

Si consideri la seguente sezione in c.a.:

dove:

b = 30 [cm] h = 40 [cm] d = 40 - 3 = 37 [cm] Aa = 6 Ø 14 = 9.23 [cmq] Staffe: Ø8/16 [cm] Calcestruzzo C20/25 Barre B450 C

 $f_{cd}=200/1.5*0.85 = 113 \text{ [kg/cmq]} \text{ (resistenza di progetto del calcestruzzo)}$ $f_{yd}=4500/1.15 = 3913 \text{ [kg/cmq]} \text{ (resistenza di progetto dell'acciaio)}$

Si riportano i valori ottenuti con il programma *CDSWin* con il metodo rigoroso utilizzando il legame parabola rettangolo per il calcestruzzo ed elastoplastico perfetto per l'acciaio.

Questi valori ultimi sono ottenuti mediante un modello che prevede l'integrazione numerica dello stato tensionale.

Filo	Quota	т					VERIFIC	CA A PRES	SSO-	FLES	SIONE						VERI	FICA	A TAG	LIO E	TOR	6101	١E			
Iniz	Iniz.	r	Sez	Co																						
Fin.	Finale	а	Bas	nc	Co	M Exd	N Ed	Moltip	x/	εf%	εc%	Area	cmq	Co	V Exd	V Eyd	T Sdu	V Rxd	V Ryd	TRd	TRId	Coe	Coe	ALon	sta	affe
Ctgθ	AmpC	t	Alt	io	Nr	(t*m)	(t)	Ultimo	/d	100	100	sup	o inf	Nr	(t)	(t)	(t*m)	(t)	(t)	(t*m)	(t*m)	Cls	Sta	cmq	Pas	s Lun
1	2,00		2	1	1	2,8	0,0	4,3	22	100	28	4,6	9,2	1	0,0	7,5	0,0	<mark>14,2</mark>	<mark>19,6</mark>	<mark>4,5</mark>	<mark>0,0</mark>	<mark>38</mark>	<mark>38</mark>	<mark>0,0</mark>	<mark>16</mark>	<mark>37</mark>
2	2,00		30	3	1	<mark>9,4</mark>	<mark>0,0</mark>	<mark>1,3</mark>	22	100	28	4,6	9,2	1	0,0	6,3	0,0	10,3	14,2	3,3	0,0	32	44	0,0	22	427
2.43	1,00		40	5	1	2,8	0,0	4,3	22	100	28	4,6	9,2	1	0,0	-7,5	0,0	14,2	19,6	4,5	0,0	38	38	0,0	16	37

Si effettuerà il controllo dei risultati della flessione per la sezione di campata e per il taglio all'incastro.

Test di verifica n°27

In campata il programma fornisce per un momento di calcolo

$$M_{ed} = 9,4 [t m]$$

e un moltiplicatore ultimo di 1.3.

Il valore del momento resistete ultimo vale allora:

$$M_{ru} = M_{ed} \times 1.3 = 9.4 \times 1.3 = 12,22$$
 [t m]

Si operi, ora, il confronto con il calcolo semplificato con stress block pari all'80% dell'asse neutro:

$$x = (Aa \times f_{yd}) / (0.8 \times b \times f_{cd}) = 9,23 \times 3913 / (0,8 \times 30 \times 113) = 13.32 \text{ [cm] (asse neutro)}$$

$$M_{ru}^{*} = (Aa \times f_{yd}) \times (d - 0,4 \text{ x}) = 9,23 \times 3913 \times (37 - 0,4 \times 13.32) / 100000 = 11,44 \text{ [t m] (momento resistente)}$$

Scarto $\varepsilon = (11,44 - 12,22) / 12,22 = -6 \%$

Come previsto, il metodo semplificato risulta leggermente a favore di sicurezza validando il risultato ottenuto in maniera rigorosa dal software.

b2) CALCOLO DEL TAGLIO RESISTENTE

Dati di calcolo:

 $Ctg\theta = 2,43$ staffe Ø8/16 [cm] ovvero A_{sw}=1 [cmq] s = 16 [cm] d= 37 [cm]

All'appoggio il programma fornisce un taglio resistente pari a:

 $V_{rdy} = 19,6 [t]$

Si effettua il calcolo manuale così come previsto al punto 4.1.2.1.3.2 delle NTC 2008:

Sforzo normale Np (kg) (> Con	npr.)	0	$\sigma_{cp}/f_{cd} =$	0
Angolo biella compressa	9	22,4	Ctg 9	2,43
$V_{\text{Rsd}} = 0.9 \cdot d \cdot \frac{A_{\text{SW}}}{s} \cdot f_{yd} ctg\theta$	9(Staffe)	=		19620
		α. _c =		1,00 19621,24

CDSWin Validazione del codice di calcolo

Manualmente, quindi, si ottiene un valore di taglio resistente della biella compressa pari a quello delle staffe per un valore di 19620 [kg], ovvero:

$V_{rdy-manuale} = 19,6 [t]$

Il calcolo manuale ha fornito quindi un valore identico a quello fornito dal programma.

Si noti, per concludere, che il valore dell'inclinazione della biella compressa scelto dal *CDSWin* risulta quello ottimale del meccanismo bilanciato trazione-compressione a cui corrisponde il minimo quantitativo del armatura trasversale.

Test di verifica n°28

Analisi sismica lineare e non lineare (push over) di una facciata in muratura

Tipo di analisi: Lineare e non lineare (Push Over) di una facciata in muratura ad una sola elevazione dello spessore di 0,40 ml con un carico verticale derivante dall'impalcato di 5 t/ml.

Obiettivo: Il test consiste nel confrontare i risultati ottenuti da una analisi sismica lineare ed una non lineare effettuata con il *CDSWin – CDMa Win* con i risultati ottenuti direttamente con calcoli manuali.

§ § §

Sia data la seguente facciata in muratura:

CARATTERISTICHE DELLE MURATURE

- $f_k = 20 \text{ kg/cmq}$ (resistenza a compressione)
- $\tau_k = 0,91 \text{ kg/cmq}$
- E = 20000 kg/cmq
- G = 8000 kg/cmq
- $\gamma = 1.9 \text{ t/mc}$
- $\delta_{bSLU} = 0,006$ (deformazione ultima collasso flessionale)

 $\delta_{sSLU} = 0,004$ (deformazione ultima collasso a taglio)

Livello di conoscenza adeguata FC = 1,20

 $\gamma_M = 2$ coefficiente parziale muratura combinazione sismica

RESISTENZE DI PROGETTO

Analisi lineare:

 $f_d = 20 / (2 \times 1,2) = 8,33 \text{ kg/cmq}$

 $\tau_d = 0{,}91 \ / \ (2 \times 1{,}2) = 0{,}38 \ kg/cmq$

Analisi non lineare :

 $f=20 \; / \; 1,2=16,67 \; kg/cmq$

 $\tau \ = 0{,}91 \ / \ 1{,}2 = 0{,}76 \ kg/cmq$

VALUTAZIONE DELLE MASSE COMPLESSIVE

Il programma, in automatico, fornisce le seguenti grandezze:

	BARICENTRI MASSE E RIGIDEZZE								
PIANO	QUOTA	PESO	XG	YG	XR	YR	DX	DY	
N.ro	(m)	(t)	(m)	(m)	(m)	(m)	(m)	(m)	
1	4,00	64,63	5,00	0,00	5,04	0,00	0,04	0,00	

Valutazione manuale

Nel valutare le masse complessive che partecipano al tagliante sismico, le pareti si considerano al 50% per cui:

$$Wg = 0,40 \times 1,90 \times (4 \times 4/2 + 4,5 \times 4/2 + 1,5 \times 1,5) = 14,63 \text{ t}$$

Mentre la massa portata dovuta al solaio è data da:

$$Wq = 5 \times 10 = 50 t$$

Di conseguenza:

$$Wt = Wg + Wq = 64,63 t$$

valore identico a quello ottenuto dal software.

ANALISI ELASTICA LINEARE SISMICA MODALE

Il programma fornisce i seguenti risultati:

	VERIFICA SISMICA GLOBALE MASCHI MURARI - QUOTA N.ro: 1									
	VERIFICA GLOBALE MASCHI MURARI									
Muro	Modo di	Cmb	Coeff.	Nru	Vru	Mru	Nd	Vd	Md	TirPass
N.ro	collasso		sicur.	(t)	(t)	(tm)	(t)	(t)	(tm)	(t)
1	FLESSIONE	15	1,80	-36,76	17,48	49,26	-36,76	6,85	27,41	0,00
2	FLESSIONE	11	1,77	-40,78	19,52	61,95	-40,78	8,76	35,04	0,00

Valutazione manuale

Per i meccanismi flessionali si considera la compressione media al piede del pannello mentre per le verifiche del meccanismo a taglio per fessurazione diagonale si considera la compressione media nella zona centrale del pannello.

Muro 1:

Np.p. $1,90 \times 4 \times 4 \times 0,4 = 12,16 \text{ t}$ Np.p. architrave = $\frac{1}{2} \times 1,90 \times 1,5 \times 1,5 \times 0,4 = 0,85 \text{ t}$ Nq solaio = $(4 + 1,50/2) \times 5 = 23,75 \text{ t}$ Nsomma = 36,760 t $\sigma_0 = 36760 / (40 \times 400) = 2,29 \text{ kg/cmq}$ (piede pannello)

$$Mru = 4002 \times 40 \times 2,29/2 \times (1 - 2,29/(0,85 \times 8,33)) = 4957953 \text{ kgcm} = 49,58 \text{ tm}$$

$$\label{eq:stars} \begin{split} l/h &= 1 \\ \sigma_0 &= 1,6 \ kg/cmq \end{split}$$

$$Vru = 400 \times 40 \times 1.5 \times 0.38/1.0 \times (1 + 1.6/(1.5 \times 0.38))^{1/2} = 17794 \text{ kg} = 17.8 \text{ kg}$$

Muro 2:

Np.p. $1,90 \times 4,50 \times 4 \times 0,4 = 13,68 \text{ t}$ Np.p. architrave = $\frac{1}{2} \times 1,90 \times 1,5 \times 1,5 \times 0,4 = 0,85 \text{ t}$ Nq solaio = $(4,50 + 1,50/2) \times 5 = 26,25 \text{ t}$ Nsomma = 40,780 t $\sigma_0 = 40780/(40 \times 450) = 2,27 \text{ kg/cmq}$ (piede pannello)

$$Mru = 4502 \times 40 \times 2,27/2 \times (1 - 2,27/(0,85 \times 8,33)) = 6246075 \text{ kgcm} = 62,46 \text{ tm}$$

h/l=0,825 si assume b=1 $\sigma_0=1,6$ kg/cmq

$$Vru = 450 \times 40 \times 1.5 \times 0.38/1.0 \times (1 + 1.6/(1.5 \times 0.38))^{1/2} = 20018 \text{ kg} = 20,00 \text{ t}$$

CONFRONTO

MURO n.	Mru CDS	Mru TEST	scarto %	Vru CDS	Vru TEST	scarto %
1	49,26	49,58	-0,65	17,48	17,8	-1,8
2	61,95	62,46	-0,83	19,52	20	-2,5

MURO n.	Nd CDS	Nd TEST	scarto %
1	36,76	36,76	0
2	40,78	40,78	0

Gli scarti sono inferiori al 1% per i momenti ed al 2,5% per i tagli e sempre A VANTAGGIO DI SICUREZZA.

ANALISI STATICA NON LINEARE (PUSH OVER)

Il programma, in automatico, fornisce le seguenti grandezze:

	RISULTATI GENERALI PUSH-OVER								
PUSH-OVER N.ro	1 - DIST	RIB. FORZE SECONDO DEFORMAT	A MODALE						
Angolo Ingr. Sisma (Grd)	0	Numero collassi totali	2						
Numero passo Resist.Max.	5	Numero passi significativi	7						
Massa SDOF (t)	64,63	Taglio alla base max. (t)	33,78						
Coeff. Partecipazione	1,00	Resistenza SDOF (t)	32,31						
Rigidezza SDOF (t/m)	13020,72	Spostam. Snervam. SDOF mm	2						
Periodo SDOF (sec)	0,14	Rapporto di incrudimento	0,000						
Rapporto Alfau/alfa1	8140,731	Fattore struttura	3,710						
Coeff Smorzam.Equival.	33,000	Duttilità	9,686						

ADSR Smax =0,52 dmax=24mm

Valutazione manuale

Si valutino i valori resistenti utilizzati per l'analisi non lineare.

Muro 1:

 $\sigma_0 = 2,29$ kg/cmq (piede setto)

$$Mru = 4002 \times 40 \times 2,29/2 \times (1 - 2,29/(0.85 \times 16,67)) = 6154030 \text{ kgcm} = 61,54 \text{ tm}$$

l/h=1

 $\sigma_0\!\!=\!\!1,\!6~kg/cmq$

$$Vru = 400 \times 40 \times 1.5 \times 0.76/1.0 \times (1 + 1.6/(1.5 \times 0.76))^{1/2} = 28278 \text{ kg} = 28.3 \text{ t}$$

CDSWin Validazione del codice di calcolo

Test di verifica n°28

Muro 2:

 $\sigma_0 = 2,27$ kg/cmq (piede setto)

$$Mru = 4502 \times 40 \times 2,27/2 \times (1 - 2,27/(0,85 \times 16,67)) = 7720671 \text{ kgcm} = 77,21 \text{ tm}$$

h/l=0,825 si assume b=1

 $\sigma_0=1,6$ kg/cmq

$$Vru = 450 \times 40 \times 1.5 \times 0.38/1.0 \times (1 + 1.6/(1.5 \times 0.76))^{1/2} = 31812 \text{ kg} = 31.8 \text{ t}$$

Per stimare in maniera affidabile il limite superiore del tagliante alla base ultimo, si ipotizzi che le pareti raggiungano i valori ultimi di resistenza contemporaneamente per cui:

TAGLIANTE ULTIMO:

- Per meccanismo flettente:	Vb1 = (Mru1 + Mru2)/H = (61,54 + 77,21)/4 = 34,69 t
- Per meccanismo tagliante:	Vb2 = Vru1 + Vru2 = (28,30 + 31,8) = 60,10 t

Il meccanismo ultimo della facciata è di tipo flessionale per cui:

Vb= Vb1= 34,69 t

Sa = Vb/W= 34,69/64,63 = 0,537 g

 $d_{slu} = 0,006 \times 4000 = 24$ mm (spostamento ultimo per meccanismo flessionale)

CONFRONTO

GRANDEZZA	CDS	TEST	scarto %
Vb	33,78	34,69	-2,7
Sa	0,52	0,54	-3,8
d _{slu}	24 mm	24 mm	0

I risultati dell'analisi risultano pienamente validati dal confronto effettuato.

Test di verifica n°29

Test pratico di validazione numerica della progettazione dei rinforzi in FRP

Premessa

Il calcolo dei rinforzi in FRP viene effettuata con riferimento al documento CNR DT 200 /2004 ed alle Linee Guida del C.S.LL.PP. per la Progettazione, l'Esecuzione ed il Collaudo di Interventi di Rinforzo di strutture di c.a., c.a.p e murarie mediante FRP.

Modello

I test vengono svolti su un semplice portale in calcestruzzo armato valutando l'incremento di resistenza a taglio in corrispondenza di un estremo del pannello di nodo trave-pilastro.

Un ulteriore test è stato svolto per valutare l'incremento di duttilità derivante dal confinamento della zona critica di un pilastro.

Test 1: Incremento di taglio resistente in corrispondenza di un estremo della trave

Sezioni rettangolari: B=30 cm H=50 cm c=20mm Calcestruzzo C20/25 Acciaio B450C spessore solaio=20cm

FIBRE DI CARBONIO FRP

CARATTERISTICHE MECCANICHE	VALORI
TIPO:	Tessuto monodirezionale in fibre di carbonio
Grammatura	300 g/ m ²
Massa volumica (kg/m3):	1820
Spessore equivalente di tessuto secco (mm):	0.165
Area resistente per unità di larghezza (mm2/m):	165
Resistenza meccanica a trazione (N/mm2)	3000
Carico massimo per unità di larghezza (kN/m)	495
Modulo elastico a trazione (N/mm2):	300.000
Allungamento a rottura (%) εfk	1.3%
η (tabella 3.4) CNR-DT 200/04	0.85
γ fd rottura per delaminazione (tabella 3.2)	1.2
γfd Rottura fibra (tabella 3.2)	1.1
γRD Verifiche a taglio (tabella 3.3)	1.2

Dominio di resistenza calcolato dal programma

Calcolo del taglio resistente "meccanismo a trazione" utilizzando un'inclinazione delle fessure diversa per il contributo delle fibre FRP e per il contributo delle staffe:

CDSWin Validazione del codice di calcolo

Contributo staffe inclinazione del puntone $\cot(\theta) = 2.5$:

$$V_{rdw} = 0.9 \cdot f_{ydw} \cdot A_{st} \cdot \frac{d}{p} \cdot \cot \vartheta = 0.9 \cdot 3913 \cdot 1.00 \cdot \frac{46.5}{20} \cdot 2.5 = 20570 \, kg$$

Contributo FRP (Resistenza massima di calcolo fibra) $\cot(\theta) = 1$:

$$f_d = E_f \cdot \varepsilon_{fk} \cdot \eta / \gamma_{fd} = 300000 \cdot 0.013 \cdot 0.85 / 1.10 = 30136 \, kg / cmq$$

Meccanismo di delaminazione (Linee guida 3.1):

$$l_e = \sqrt{\frac{E_f \cdot t_f}{2 \cdot f_{ctm}}} = \sqrt{\frac{300000 \cdot 0.165}{2 \cdot 1,03}} = 155 mm$$

(Unità di misura N e mm)

K_b=1 in sicurezza

$$f_{fd} = \frac{0.24}{\gamma_{f,d} \cdot \sqrt{\gamma_c}} \sqrt{\frac{E_f \cdot k_b \sqrt{f_{ck} \cdot f_{ctm}}}{t_f}} = \frac{0.24}{1.2 \cdot \sqrt{1.5}} \sqrt{\frac{300000 \cdot 1 \cdot \sqrt{20 \cdot 1.03}}{t_f}} = 469.2N \ / \ mmq = 4692 \ kg \ / \ cmq$$

 h_{min} =46.5 – 20 = 26.5 cm (caso con FRP ad U trave emergente)

$$\phi_r = 0.2 + 1.6 \cdot \frac{r_c}{b_w} = 0.2 + 1.6 \cdot \frac{2}{30} = 0.306$$
 Linee guida (3.25)

$$f_{fed} = f_{df} \cdot \left(1 - \frac{1}{3} \cdot \frac{l_e}{h_{\min}}\right) = 4692 \cdot \left(1 - \frac{1}{3} \cdot \frac{15.5}{26.5}\right) = 3777 \, kg \, / \, cmq \text{ Linee guida (3.23)}$$

Per una fasciatura continua ed ortogonale all'asse la 3.21 si semplifica:

$$V_{Rdf} = \frac{1}{\gamma_{Rd}} 0.9 \cdot d \cdot f_{fed} \cdot 2 \cdot t_f \cdot \frac{w_f}{p_f} = \frac{1}{1.2} 0.9 \cdot 46.5 \cdot 3777 \cdot 2 \cdot 0.0165 \cdot 1 = 4347 kg$$

Nell'ipotesi di considerare l'inclinazione delle fessure per il contributo FRP fissata a 45°:

$$Vrt = (V_{Rdw} + V_{Rdf}) = (20570 + 4347) = 24917 \text{ kg} = 24.92 \text{ t}$$

Valore identico a quello fornito dal software (cfr. dominio di resistenza 3 valore $V_{uy}). \label{eq:Valore}$

Test di verifica n°29

Test 2: Incremento di resistenza del pannello di nodo trave pilastro

Sezione rettangolare trave:

B=30 cm

H=50 cm

Sezione rettangolare pilastro:

B=40 cm

H=30 cm

FIBRE DI CARBONIO FRP

CARATTERISTICHE MECCANICHE	VALORI							
TIPO:	Tessuto QUADRIASSIALE in fibre di carbonio							
Grammatura	300 g/ m ²							
Massa volumica (kg/m3):	1820							
Spessore equivalente di tessuto secco (mm):	0.165							
Area resistente per unità di larghezza (mm2/m):	165							
Resistenza meccanica a trazione (N/mm2)	3000							
Carico massimo per unità di larghezza (kN/m)	495							
Modulo elastico a trazione (N/mm2):	300.000							
Allungamento a rottura (%) εfk	1.3%							
η (tabella 3.4) CNR-DT 200/04	0.85							
γ fd rottura per delaminazione (tabella 3.2)	1.2							
γfd Rottura fibra (tabella 3.2)	1.1							
γRD Verifiche a taglio (tabella 3.3)	1.2							

Al fine di tenere in conto il contributo delle fibre si utilizza il meccanismo resistente dei nodi non fessurati previsto dalle NTC2008 al punto 7.4.10.

Questo modello non fessurato prevede la presenza di elementi resistenti a trazione in parallelo alla resistenza del calcestruzzo in modo tale da limitare le tensioni diagonali al valore f_{ctd} .

Riscrivendo opportunamente la 7.4.10 si ottiene:

$$\frac{\left[V_{jbd} / (b_j \cdot h_{jc})\right]^2}{f_{ctd} + v \cdot f_{cd}} - \frac{A_{sh} \cdot f_{ywd}}{b_j \cdot h_{jw}} \le f_{ctd}$$

Il secondo termine del primo membro rappresenta quindi la resistenza a trazione addizionale dovuta al presidio utilizzato dove Ash è l'area complessiva delle staffe o del tessuto presente sul nodo di altezza h_{jw} :

Per cui nel caso di FRP quadri assiale:

$$A_{sh} = h_{jw} \times (t_f + 2 \times t_f \times \cos(45^\circ))$$

Il valore della resistenza f_{ywd} viene assunta pari alla resistenza della sistema FRP limitando la deformazione massima al 0.4%, come previsto al punto *3.7.3.2.4 Nodi* delle linee guida C.S. LL.PP.

$$f_{ywd} = 0.004 \times 3000000 = 12000 \text{ kg/cmq}$$

$$A_{sh^*} f_{ywd} = 50 \times (0.0165 + 2 \times 0.0165 \times 0.71) \times 12000 = 23950 \text{ kg}$$

Questo equivale ad una resistenza a trazione aggiuntiva pari a:

$$A_{sh*}f_{ywd}/(h_{jw} \times b_j) = 23950/(50 \times 30) = 15.97 \text{ kg/cmq}$$

	RISULTATI VERIFICHE NODI CLS - PUSH N.ro: 5 - Fx(+) Massa														
1	IDEN	NTIFICA	TIVO				DIREZIONE 'X'								
	Filo N.ro	Q.In. (m)	Nodo3d N.ro	Nsup (t)	Coll Nodo	TaglSup (t)	Traz-Af (t)	SgmComp kg/cmq	SgmTraz kg/cmq	RcLim kg/cmq	RtLim kg/cmq				
	1	3,00	2	0,0	NO	0,0	0,0	0,0	0,0	66,7	11,0				
	2	3,00	4	0,0	NO	0,0	23,5	-19,6	3,7	66,7	11,0				

Effettuando i calcoli manuali e assumendo la trazione in assenza di rinforzo fornito dal software pari a 19,59 kg/cmq:

$$\frac{\left[V_{jbd} / (b_j \cdot h_{jc})\right]^2}{f_{ctd} + v \cdot f_{cd}} - \frac{A_{sh} \cdot f_{ywd}}{b_j \cdot h_{jw}} = 19,59 - 15,9 = 3.69 kg / cmq$$

valore identico a quello fornito dal software.

Test 3: Confinamento di resistenza del pannello di nodo trave pilastro

Sezione rettangolare pilastro:

B=40 cm

H=30 cm

FIBRE DI CARBONIO FRP

CARATTERISTICHE MECCANICHE	VALORI
TIPO:	Tessuto QUADRIASSIALE in fibre di carbonio
Grammatura	300 g/ m ²
Massa volumica (kg/m3):	1820
Spessore equivalente di tessuto secco (mm):	0.165
Area resistente per unità di larghezza (mm2/m):	165
Resistenza meccanica a trazione (N/mm2)	3000
Carico massimo per unità di larghezza (kN/m)	495
Modulo elastico a trazione (N/mm2):	300.000
Allungamento a rottura (%) εfk	1.3%
η (tabella 3.4) CNR-DT 200/04	0.85
γ fd rottura per delaminazione (tabella 3.2)	1.2
γfd Rottura fibra (tabella 3.2)	1.1
γRD Verifiche a taglio (tabella 3.3)	1.2

Per la valutazione del confinamento del composito si fa riferimento alle Linee Guida del C.S. LL.PP. capitolo 3.5: *CONFINAMENTO*.

$$\varepsilon_{fd,rid} = \min \begin{cases} \eta_a \cdot \frac{\varepsilon_{fk}}{\gamma_f} = 0.95 \frac{0.013}{1.1} = 0.0112\\ 0.6 \cdot \varepsilon_{fk} = 0.0078 \end{cases} = 0.0078 \end{cases} = 0.0078$$
 Deformazione ridotta (cfr. Linee Guida 3.44)

$$\rho_f = \frac{2 \cdot t_f \cdot (b+h) \cdot b_f}{b \cdot h \cdot p_f} = \frac{2 \cdot 0.0165 \cdot (30+40)}{30 \cdot 40} = 0.001925 ; b_f = p_f - fasciatura continua (cfr. Linee Guida 3.41)$$
$$b' = b - 2 * r_c = 30 - 2 \cdot 2 = 26cm$$
$$b' = h - 2 * r_c = 40 - 2 \cdot 2 = 36$$
$$K_h = 1 - \frac{b'^2 + h'^2}{3A_g} = 1 - \frac{26^2 + 36^2}{3 * 30 * 40} = 0.452 (cfr. Linee Guida 3.42)$$

Pressione di confinamento (cfr. Linee Guida 3.34):

$$f_l = \frac{1}{2} \cdot \rho_f \cdot E_f \cdot \varepsilon_{fd,rid} = \frac{1}{2} \cdot 0.001925 \cdot 3000000 \cdot 0.0078 = 22.52 kg / cmq$$

Cfr. Linee Guida 3.33 3.35:

$$f_{leff} = f_l \cdot k_h \cdot k_v \cdot k_a = 22.52 \cdot 0.452 \cdot 1 \cdot 1 = 10.185 kg / cmq$$

CDSWin Validazione del codice di calcolo

Test di verifica n°29

$$\varepsilon_{ccu} = \varepsilon_{cu} + 0.015 \cdot \sqrt{\frac{f_{1eff}}{fc}} = 0.0035 + 0.015 \cdot \sqrt{\frac{10.185}{200}} = 0.0068$$
(cfr. Linee Guida 3.43)

Valore identico a quello fornito dal software (cfr. dominio di resistenza 1 valore Def. Ultima cls confinato).

Nell'applicazione della formula si è utilizzato il valore della resistenza del calcestruzzo senza ridurla del coefficiente parziale, trattandosi di utilizzo della deformazione in un'analisi non lineare.

Rapporti tra le unità anglosassoni e quelle metriche

Generalmente i simboli americani ed inglesi, relativi alle unità di misura, si trovano scritti in modo non omogeneo in parte con lettere maiuscole (p.e. Lb) oppure minuscole (lb.) e nel plurale viene talvolta inserita una s (lbs). Nella tabella che segue vengono riportate le principali unità di misura anglosassoni con relativi fattori di conversione per il sistema SI.

Grandezza fisica	Unità anglosassone	Relazioni con le unità metriche				
Lunghezza l	Inch (pollice) Foot (piede) Mile (miglio)	1 in. = 25.40 mm 1 ft. = 30.48 cm 1 ml. = 1.6093 Km				
Superficie A	Square inch Square foot	1 sq. In. = 6.4516 cm^2 1 sq. Ft. = 929.03 cm^2				
Volume V	Cubic inch Cubic foot	$1 cu. In. = 16.387 cm^{3}$ 1 cu. Ft. = 28.317 cm ³				
Velocità v	Foot/second Mile/hour	1 ft./sec. = 0.3048 m/s 1 mi./hr. = 1.6093 Km/h				
Accelerazione a	Foot/second ²	$\frac{1 \text{ ft./sec}^2 = 30.48 \text{ cm/s}^2}{32.17 \text{ ft./sec}^2 = 981 \text{ cm/s}^2}$				
Forza peso F	Grain Ounce Pound Kip (1000 lb)	1 gr. = 0.068 g 1 oz. = 28.35 g 1 lb. = 0.45359 Kg 1 Kip = 453.6 Kg				
Temperatura t	Degree Fahrenheit Degree Rankine	$^{\circ}F = 9/5^{\circ}C + 32$ $^{\circ}Rank = -273.15^{\circ}C$				
Pressione p	Pound/square foot Pound/square inch	1 lb./sq. Ft. = 48.82 N/m ² 1 psi = 0,07030696 Kg/cm ²				
Densità q	Pound/ cubic inch Pound/ cubic foot	$1 lb./cu. In. = 27.66 g/cm^{3} (Kg/l)$ 1 lb./cu. Ft. = 16.019 Kg/m ³				
Frequenza ω	Cycle/second (1Hertz)	1 cycle/sec = 6.283185 rad/s				

Carichi

• Carichi per unità di lunghezza

1 pound per inch = 1 lb. /in.	17.858 Kg/m = 175.187 N/m						
<i>1 pound per foot = 1 lb. /ft.</i>	1.488 Kg/m = 14,597 N/m						
1 Kilopound per foot = 1 Kip /ft.	1.488 t/m = 14,597 KN/m						

• Carichi per unità di lunghezza

<i>1</i> pound per square inch = $1 \text{ psi} = 1 \text{ lb. /in.}^2$	0.6896 N/cm ²
<i>1 pound per square foot</i> = $1 \text{ psf} = 1 \text{ lb. /ft.}^2$	$4.8826 \ Kg/m^2 = 47.8983 \ N/m^2$
1 Kilopound per square inch = 1 Kip /ft.	$157.4810 \ Kg/cm^2 = 1544.889 \ N/cm^2$

• Momenti

1 inch ³ = 1 in. ³ = Momento resistente	$16.387 \ cm^3$							
1 inch ⁴ = 1 in. ⁴ = Momento d'inerzia	$41.623 \ cm^4$							
1 pound inch = 1 lb. in.	1.152 Kg cm = 11.301 N cm							
1 pound foot = 1 lb. ft. = 12 lb. in.	13.825 Kg cm = 135.623 N cm							

Bibliografia

- [1] A&C- Analisi e calcolo n° 5, Apr.-Giu. 2001
- [2] A&C- Analisi e calcolo n° 6, Lug.-Set. 2001
- [3] A&C- Analisi e calcolo n° 8, Gen.-Mar. 2002
- [4] Timoshenko, Strength of Material, Part I, Elementary Theory and Problems 3rd Edition. D. Van Nostrand Co., Inc.New York, N. 1955.
- [5] W. Nash, Strength of Material
- [6] Tuma, J.J., Munsi, R.K., Theory and Problems of Advanced Structural Analisys, Shaums's Outline Series, McGraw-Hill
- [7] Seely, F. B., and Smith, J.O., "Advanced Mechanics of Materials", Second Edition, John Wiley and Sons
- [8] NAFEMS, Background to Benchmarks, 1993.
- [9] Crandall, An Introduction to the Mechanics of Solids, McGraw-Hill Book Co., Inc.. New York, NY. 1959.
- [10] Cremonese, Manuale Ingegneria Civile, ESAC, SEZ. I e II
- [11] Ray, W. Clough, Joseph Penzien, Dynamics of Structures, Mc Graw-Hill Book Company
- [12] Thomson, Vibration Theory and Applications
- [13] Blevins, Robert D., "Formulas for Natural Frequency and Mode Shape," Van Nostrand Reinhold Company, 1979
- [14] The STANDARD NAFEMS Benchmarks, TNSB, Rev. 3, 5 October, 1990
- [15] Timoshenko, S., and Woinowsky-Krieger, S., "Theory of Plates and Shells", Second Edition, McGraw-Hill, 1959, pg. 113 - 117.
- [16] CISM International Centre For Mechanical Sciences Analisi per elementi finite: Modellazione strutturale e controllo dei risultati. A cura di B. A. Schrefler A. A. Camaro

CDGsWin - Computer Design of Geotechnical structures

C.D.Gs. Win Release 2009, 2010, 2011 e 2012

Validazione del codice di calcolo

Software Tecnico Scientifico S.r.I.

VERIFICA DI PORTANZA DELLE FONDAZIONI

Descrizione esempio

Allo scopo di verificare l'accuratezza dei risultati forniti dal software *C.D.Gs. Win* si procede al calcolo manuale di verifica di portanza della fondazione del telaio a campata unica fondato su trave rovescia rappresentato in figura 1. La trave di fondazione ha lunghezza L = 5 [m]. Le caratteristiche geometriche della sezione trasversale sono rappresentate sempre in figura 1. In particolare l'altezza totale è h = 0.6 [m] e la larghezza del magrone è B = 0.9 [m].

Fig. 1. Telaio fondato su trave rovescia

Il telaio è soggetto ad un carico verticale linearmente distribuito applicato sulla trave in elevazione $q_v = -1.5 [t/m]$. Nell'analisi sono stati trascurati gli effetti dovuti al peso proprio degli elementi strutturali.

Le caratteristiche meccaniche del suolo di fondazione sono riportate nella tabella I e confermato dalla tabella di stampa di *C.D.Gs. Win* di seguito riportata:

Peso specifico	$\gamma = 1800 \left[kg / m^3 \right]$
Angolo d'attrito	$\varphi = 35^{\circ} = 0.611[rad]$
Coesione	$c = 0.1 \left[kg/cm^2 \right]$
Modulo elastico	$E = 500 \left[kg / cm^2 \right]$
Rapporto di Poisson	v = 0.2

Tab. I. Parametri meccanici suolo di fondazione

					DANETRI	OF OTE ONLY									
	PARAMETRI GEOTECNICI TRAVI WINKLER														
	IDENTIFIC	OVITAC				NON DF	NON DRENATA								
Trave	Infiss	Tipo	Gamma	Fi'	C'	Mod. El	Poisson	P base	Indice	IndRig	Cu	P base			
N.ro	m	Tabel	kg/mc	Grd	kg/cmq	kg/cmq		kg/cmq	Rigid.	Crit.	kg/cmq	kg/cmq			
1	0.60	M1	1800	35.00	0.10	500.00	0.20	0.11	896.68	242.38	0.10	0.11			
1															

Per la fondazione sono stati fissati affondamento e ricoprimento nulli. Si prevede quindi che il piano di campagna sia coincidente con l'estradosso delle fonazioni, con una distanza fra i piani di

campagna e di posa delle fondazioni D = h = 0.6 [m].

Carico sollecitante

Il risultate complessivo delle forze scaricate in fondazione dal telaio è:

$$R_{v} = |q_{v}| \cdot l = 1.5 [t/m] \cdot 5 [m] = 7.5 [t] = 7500 [kg]$$

Tale risultato è in accordo con quello fornito dal software, come mostrato dalla tabella di stampa di seguito riportata (anche in *C.D.Gs. Win* si è trascurato il peso proprio):

	RISULTANTI SOLLECITAZIONI TRAVI WINKLER													
Trave	Combinazione	Rv	Vx	Vy	Mrx	Mry								
N.ro	N.ro	(kg)	(kg)	(kg)	kg*cm	kg*cm								
1	A1 / 1	7500	0	0	0	0								

Test di validazione formulazione classica

Il carico limite del terreno q_{lim} , da confrontare con il risultate delle forze scaricate in fondazione R_{y} , è determinato con la formula di *Brinch-Hansen*:

$$q_{\text{lim}} = q \cdot N_q \cdot \Psi_q \cdot i_q \cdot d_q \cdot b_q \cdot g_q \cdot s_q + c \cdot N_c \cdot \Psi_c \cdot i_c \cdot d_c \cdot b_c \cdot g_c \cdot s_c + \frac{1}{2}\gamma \cdot B' \cdot N_\gamma \cdot \Psi_\gamma \cdot i_\gamma \cdot b_\gamma \cdot s_\gamma$$

Sono di seguito valutati tutti i coefficienti presenti nella formula di Brinch-Hansen nel caso di condizione drenata.

Carico sul piano di fondazione

 $q = \gamma \cdot D = 1080 [kg]$

Fattori di capacità portante

$$N_q = \tan^2 \left(\frac{\pi}{4} + \frac{\varphi}{2}\right) \cdot \exp\left\{\pi \tan(\varphi)\right\} = 33.296$$

$$N_c = \frac{N_q - 1}{\tan(\varphi)} = 46.123$$

$$N_{\gamma} = 2(N_q + 1)\tan(\varphi) = 48.028$$

Coefficienti di punzonamento

$$\Psi_q = \Psi_\gamma = \exp\left\{ \left(0.6 \frac{B}{L} - 4.4 \right) \tan(\varphi) + 3.07 \frac{\sin(\varphi) \cdot \log(2I_R)}{1 + \sin(\varphi)} \right\} = 1$$
$$\Psi_c = \Psi_q - \frac{1 - \Psi_q}{N_q \tan(\varphi)} = 1$$

Nelle precedenti si è posto:

$$I_{R} = \frac{G}{c + q' \tan(\varphi)} = 896.677 \le I_{CR}$$

con:

$$G = \frac{E}{2(1+\upsilon)} = 208.333 \left[\frac{kg}{cm^2} \right] ; \quad q' = \gamma \left(D + \frac{B}{2} \right) = 1890 \left[kg \right]$$
$$I_{CR} = \frac{1}{2} \exp \left\{ \frac{3.3 - 0.45 \frac{B}{L}}{\tan \left(\frac{\pi}{4} - \frac{\varphi}{2} \right)} \right\} = 242.377$$

Coefficienti di inclinazione del carico

$$i_{q} = \left(1 - \frac{H}{N + B \cdot L \cdot c \cdot \operatorname{cotg}(\varphi)}\right)^{m} = 1$$
$$i_{c} = i_{q} - \frac{1 - i_{q}}{N_{c} \cdot \tan(\varphi)} = 1$$
$$i_{\gamma} = \left(1 - \frac{H}{N + B \cdot L \cdot c \cdot \operatorname{cotg}(\varphi)}\right)^{m+1} = 1$$

Nelle precedenti si è posto:

$$m = m_B \cos^2(\vartheta) + m_L \sin^2(\vartheta) = 1.847$$

$$m_{B} = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}} = 1.847 \quad ; \quad m_{L} = \frac{2 + \frac{L}{B}}{1 + \frac{L}{B}} = 1.153 \quad ; \quad \mathcal{B} = \tan^{-1} \left(\frac{Fh_{B}}{Fh_{L}}\right) = 0$$

essendo $Fh_B = 0$ ed $Fh_L = 0$ le forze orizzontali lungo B ed L, $H = \sqrt{Fh_B^2 + Fh_L^2} = 0$ il risultante di tali forze ed $N = R_v = 7500 [kg]$ il risultante delle forze verticali.

Coefficienti di affondamento del piano di posa

$$d_q = 1 + 2\frac{D}{B}\tan(\varphi) \cdot (1 - \sin(\varphi))^2 = 1.17$$

$$d_c = d_q - \frac{1 - u_q}{N_c \tan(\varphi)} = 1.175$$

Coefficienti di inclinazione del piano di posa

$$b_q = b_{\gamma} = \exp\{-2.7 \cdot \alpha \cdot \tan(\varphi)\} = 1$$

$$b_c = \exp\{-2 \cdot \alpha \cdot \tan(\varphi)\} = 1$$

essendo $\alpha = 0$ l'inclinazione del terreno di fondazione

Coefficienti di inclinazione del terreno di fondazione

$$g_{q} = g_{c} = 1$$

Coefficienti di forma

$$s_q = 1 + \frac{B}{L} \tan(\varphi) = 1.126$$
$$s_c = 1 + \frac{B}{L} \frac{N_q}{N_c} = 1.13$$
$$s_{\gamma} = 1 - 0.4 \frac{B}{L} = 0.928$$

Carico limite

Sostituendo i coefficienti determinati nella formula di Brinch-Hansen si ha:

$$q_{\rm lim} = 144.69 [t/m^2]$$

Il carico limite della fondazione si determina quindi moltiplicando q_{lim} per la superficie di impronta della fondazione e dividendolo per il coefficiente parziale $\gamma_R = 2.3$, e risulta:

$$Q_{\rm lim} = \frac{q_{\rm lim} \cdot B \cdot L}{\gamma_R} = 283.09 \, [t]$$

I risultati ottenuti risultano coincidenti con quelli forniti dal software C.D.Gs. Win di seguito riportati:

	COEFFICIENTI DI PORTANZA TRAVI WINKLER - CONDIZIONI DRENATE																			
Trave	Brii	Brinch Hansen		Incl. terreno		lgk	Comb	Comb Coef			Affondamento		Forma			Punzonamento		ento		
Nro	Nc	Nq	Ng	Gc	Gq	Gg	Sism	N.ro	IcV	lqV	lgV	Dc	Dq	Dg	Sc	Sq	Sg	Psic	Psiq	Psig
1	46.12	33.30	48.03	1.00	1.00	1.00	1.00	A1/1	1.00	1.00	1.00	1.18	1.17	1.00	1.13	1.13	0.93	1.00	1.00	1.00

	PORTANZA TRAVI WINKLER														
	IC	DENTIIFICATIVO	DRE	NATE	NON DRENATE RISULTATI										
Trave N.ro	ave Asta3d Comb Bx' By' GamEf QLimV GamEf QLimV .ro N.ro N.ro m m kg/mc (t) kg/mc (t)					QLimV (t)	N (t)	Coeff. Sicur.	Minimo CoeSic	N/Ar kg/cmq	QLim/Ar kg/cmq	Status Verifica			
1	4	A1 / 1	0.90	5.00	1800	<mark>283.1</mark>			7.5	2.04	2.04	0.17	0.34	OK	

Descrizione metodo di verifica non lineare

Il metodo di verifica proposto consiste nella valutazione del coefficiente di sicurezza λ_u dell'insieme terreno-fondazione, definito come:

$$\lambda_u = \frac{R_d}{E_d}$$

Per la valutazione del coefficiente λ_u è condotta un'analisi non lineare sulla sottostruttura, estrapolata dall'intero sistema strutturale, composta dagli elementi di fondazione ipotizzati come elastici e poggianti su suolo a comportamento non lineare.

Sul sistema strutturale così costruito è applicato un sistema di forze nodali determinate come gli scarichi in fondazione derivanti dalla sovrastruttura. L'analisi è condotta facendo crescere monotonicamente le forze applicate sulla sottostruttura di fondazione fino al raggiungimento di uno stato limite geotecnico o strutturale.

Tale procedura consente quindi la determinazione del moltiplicatore a rottura dei carichi agenti, che ovviamente coincide con il coefficiente di sicurezza λ_{μ} .

Come descritto, per eseguire la verifica di portanza delle fondazioni viene estrapolata dall'intero sistema strutturale una sottostruttura di fondazione. Questa è composta da tutti gli elementi strutturali a contatto con il suolo (travi rovesce, platee e plinti diretti o su pali) e da quelli che, pur non essendo elementi di fondazione, giacciono interamente sul medesimo piano di posa di almeno un elemento di fondazione.

Gli elementi strutturali che compongono la sottostruttura di fondazione sono modellati a comportamento elastico lineare e, se a contatto con il suolo, schematizzati come poggianti su un letto di molle a comportamento non lineare nei riguardi della componente verticale di spostamento ed elastico per le altre componenti di spostamento.

I legami costitutivi forza-spostamento (*p-u*) delle molle non lineari utilizzate per modellare il suolo sono del tipo elasto-plastico. In particolare nel caso di fondazioni superficiali (travi rovesce, platee, plinti diretti) il legame costitutivo è non resistente a trazione (Fig 2 *a*), mentre per i pali e esteso anche nel verso delle trazioni, con andamento differente rispetto a quello delle compressioni (Fig 2 *b*).

Per le fondazioni superficiali la rigidezza $k_{w,c}$ del tratto elastico del legame è valutata a partire dalla costante di *Winkler* del terreno tenendo conto della superficie di impronta di competenza della

singola molla. Per le fondazioni profonde le rigidezze $k_{w,c}$ e $k_{w,t}$ sono invece determinate tenendo conto sia delle caratteristiche del terreno che della geometria del singolo palo.

I valori di limite elastico $p_{y,c}$ e $p_{y,t}$ della forza sono dedotte dai valore Q_{lim} del carico limite calcolato con le normali teorie di *Brinch-Hansen* e *Vesic* non effettuando però la riduzione della superficie di impronta efficace di contatto fra fondazione e terreno.

Così come previsto da normativa sono eseguite verifiche agli stati limite ultimi sia del suolo di fondazione (SLU di tipo GEO) che degli elementi strutturali (SLU di tipo STR).

In particolare si assume che sia stato raggiunto lo stato limite ultimo del terreno se lo spostamento sotto una delle molle non lineari attinge al valore ultimo $u_{u,c}$ o $u_{u,t}$. Inoltre si ha lo stato limite

ultimo nel terreno se tutte le molle che modellano il suolo hanno raggiunto la fase plastica del legame costitutivo. In questa condizione infatti non è più possibile equilibrare ulteriori incrementi di carico.

Per quanto riguarda gli elementi strutturali, essendo questi ipotizzati a comportamento elastico lineare, la verifica allo stato limite è ricondotta ad una verifica degli spostamenti relativi. Lo stato limite ultimo si ritiene raggiunto se la differenza fra gli spostamenti di due nodi dell'elemento risulta superiore ad 1/50 della distanza fra i nodi.

Le verifiche sono analoghe nel caso in cui sia condotta una verifica classica di portanza delle

fondazioni, con la sola differenza che in questo caso lo spostamento ultimo del terreno è assunto

pari a quello di limite elastico.
Test di validazione formulazione non lineare

È stata eseguita una prova di validazione del modulo di calcolo *C.D.Gs. Win* determinando il coefficiente di sicurezza delle fondazioni del telaio a campata unica fondato su trave rovescia le cui caratteristiche geometriche sono riportate in figura 3. Il telaio è soggetto ad un carico verticale linearmente distribuito applicato sulla trave in elevazione definito dai seguenti valori iniziale e finale $q_{iniz} = -1.2 [t/m]$ e $q_{fin} = -2.3 [t/m]$. Nell'analisi sono stati trascurati gli effetti dovuti al peso proprio degli elementi strutturali.

Le caratteristiche meccaniche del suolo di fondazione sono riportate in tabella II:

Costante di Winkler	$\varepsilon_w = 10 \left[kg / cm^3 \right]$
Peso specifico	$\gamma = 1800 \left[kg/m^3 \right]$
Angolo d'attrito	$\varphi = 35^{\circ}$
Coesione	$c = 0 \left[kg / cm^2 \right]$

Tab. II. Parametr	i meccanici	suolo di	fondazione
-------------------	-------------	----------	------------

Fig. 3. Telaio fondato su trave rovescia

La verifica di portanza delle fondazioni eseguita con il modulo di calcolo automatico *C.D.Gs. Win* fornisce il moltiplicatori di collasso $\lambda_u = 17.550$.

È di seguito riportato il calcolo manuale del moltiplicatore λ_u secondo la procedura sopra descritta per valicare il risultato fornito da *C.D.Gs. Win.*

Adottando un numero di suddivisioni della trave di fondazione $n_{sudd} = 3$, lo schema statico da risolvere per eseguire la verifica di portanza è quello rappresentato in figura 4, formato da tre aste di lunghezza $\Delta l = l/n_{sudd} = 1.667 [m]$ collegato al suolo da 4 molle:

Fig. 4. Modello per la verifica di portanza

Le rigidezze iniziali $k_{w,i}$ e le forze di limite elastico $p_{y,i}$ delle molle sono determinate a partire dalla geometria della trave, dalla costante di *Winkler* ε_w e dal carico limite della trave che risulta $Q_{\text{lim}} = 169.9$ [t]. Per le molle si ha quindi:

$$\boldsymbol{k}_{w} = \begin{cases} \varepsilon_{w} b_{w} \Delta l / 2 \\ \varepsilon_{w} b_{w} \Delta l \\ \varepsilon_{w} b_{w} \Delta l \\ \varepsilon_{w} b_{w} \Delta l / 2 \end{cases} = \begin{cases} 81750 \\ 163500 \\ 163500 \\ 81750 \end{cases} \quad [kN \cdot m^{-1}]$$
$$\boldsymbol{p}_{y} = \begin{cases} Q_{\text{lim}} / (2n_{\text{sudd}}) \\ Q_{\text{lim}} / n_{\text{sudd}} \\ Q_{\text{lim}} / n_{\text{sudd}} \\ Q_{\text{lim}} / (2n_{\text{sudd}}) \end{cases} = \begin{cases} 277.786 \\ 555.573 \\ 555.573 \\ 277.786 \end{cases} \quad [kN]$$

avendo indicato con $b_w = 1.0 [m]$ la larghezza del magrone della trave di fondazione.

Le forze ed i momenti nodali agenti sono determinate a partire dai corrispondenti valori globali scaricati sulla trave dalla sovrastruttura, che sono $f_{tot} = 8750 [kg]$ e $m_{tot} = 229167 [kg \cdot cm]$.

Risulta quindi:

$$\boldsymbol{f} = \begin{cases} f_{tot} / (2n_{sudd}) \\ f_{tot} / n_{sudd} \\ f_{tot} / n_{sudd} \\ f_{tot} / (2n_{sudd}) \end{cases} = \begin{cases} 14.306 \\ 28.613 \\ 28.613 \\ 14.306 \end{cases} \quad [kN]$$
$$\boldsymbol{m} = \begin{cases} m_{tot} / (2n_{sudd}) \\ m_{tot} / n_{sudd} \\ m_{tot} / n_{sudd} \\ m_{tot} / (2n_{sudd}) \end{cases} = \begin{cases} 3.747 \\ 7.494 \\ 7.494 \\ 3.747 \end{cases} \quad [kN \cdot m]$$

Modellando la struttura di figura 4 come piana, l'equazione di equilibrio della stessa può essere scritta nella forma seguente:

$$\begin{bmatrix} \boldsymbol{K}_{u} + \boldsymbol{K}_{w} & \boldsymbol{K}_{u\phi} \\ \boldsymbol{K}_{u\phi}^{T} & \boldsymbol{K}_{\phi} \end{bmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{\phi} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f} \\ \boldsymbol{m} \end{pmatrix}$$

Nella precedente relazione $u \in \phi$ sono i sottovettori dei gradi di libertà nodali e K_w è la matrice diagonale delle rigidezze delle molle:

$$\boldsymbol{u} = \begin{cases} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \\ \boldsymbol{u}_3 \\ \boldsymbol{u}_4 \end{cases} \quad ; \quad \boldsymbol{\phi} = \begin{cases} \boldsymbol{\phi}_1 \\ \boldsymbol{\phi}_2 \\ \boldsymbol{\phi}_3 \\ \boldsymbol{\phi}_4 \end{cases} \quad ; \quad \boldsymbol{K}_w = \begin{bmatrix} k_{w,1} & 0 & 0 & 0 \\ 0 & k_{w,2} & 0 & 0 \\ 0 & 0 & k_{w,3} & 0 \\ 0 & 0 & 0 & k_{w,4} \end{bmatrix}$$

Le sottomatrici di rigidezza K_u , $K_{u\phi}$ e K_{ϕ} , utilizzando le unità di misura kN per le forze e m per le lunghezze, risultano:

$$\boldsymbol{K}_{u} = \begin{bmatrix} 6.005 \cdot 10^{5} & -6.005 \cdot 10^{5} & 0 & 0 \\ -6.005 \cdot 10^{5} & 1.201 \cdot 10^{6} & -6.005 \cdot 10^{5} & 0 \\ 0 & -6.005 \cdot 10^{5} & 1.201 \cdot 10^{6} & -6.005 \cdot 10^{5} \\ 0 & 0 & -6.005 \cdot 10^{5} & 6.005 \cdot 10^{5} \end{bmatrix}$$
$$\boldsymbol{K}_{u\phi} = \begin{bmatrix} 5.004 \cdot 10^{5} & 5.004 \cdot 10^{5} & 0 & 0 \\ -5.004 \cdot 10^{5} & 0 & 5.004 \cdot 10^{5} & 0 \\ 0 & -5.004 \cdot 10^{5} & 0 & 5.004 \cdot 10^{5} \\ 0 & 0 & -5.004 \cdot 10^{5} & -5.004 \cdot 10^{5} \end{bmatrix}$$
$$\boldsymbol{K}_{\phi} = \begin{bmatrix} 5.56 \cdot 10^{5} & 2.78 \cdot 10^{5} & 0 & 0 \\ 2.78 \cdot 10^{5} & 1.112 \cdot 10^{6} & 2.78 \cdot 10^{5} & 0 \\ 0 & 2.78 \cdot 10^{5} & 1.112 \cdot 10^{6} & 2.78 \cdot 10^{5} \\ 0 & 0 & 2.78 \cdot 10^{5} & 5.56 \cdot 10^{5} \end{bmatrix}$$

Risolvendo la struttura in oggetto nell'ipotesi di molle a comportamento elastico lineare si ottengono i seguenti abbassamenti nodali:

$$\overline{\boldsymbol{u}}^{(1)} = \begin{cases} 1.287 \cdot 10^{-4} \\ 1.619 \cdot 10^{-4} \\ 1.881 \cdot 10^{-4} \\ 2.213 \cdot 10^{-4} \end{cases} \quad [m]$$

Il moltiplicatore dei carichi λ_1 cui corrisponde la prima plasticizzazione di una molla si determina come:

$$\lambda_1 = \min\left\{\frac{u_{y,i}}{\overline{u}_i^{(1)}}; \quad i = 1, \dots, 4\right\}$$

essendo $u_{y,i} = p_{y,i}/k_{w,i}$ gli spostamenti di limite elastico delle molle. Risulta:

$$\lambda_1 = \frac{u_{y,4}}{u_4^{(1)}} = 15.355$$

Sotto le forze esterne $\lambda_1 f$ e $\lambda_1 m$ si ha quindi la plasticizzazione della molla 4 e gli spostamenti nodali sono:

$$\boldsymbol{u}^{(1)} = \lambda_{1} \boldsymbol{\overline{u}}^{(1)} = \begin{cases} 1.976 \cdot 10^{-3} \\ 2.487 \cdot 10^{-3} \\ 2.888 \cdot 10^{-3} \\ 3.398 \cdot 10^{-3} \end{cases} \quad [m]$$

Incrementando le forze di $\Delta \lambda$ queste saranno equilibrate da una struttura analoga a quella di figura 4 ma priva della molla del nodo 4, e quindi nella matrice K_w dovrà essere posta pari a 0 la 4° componente della diagonale principale. Sotto tale incremento di forze gli abbassamenti nodali sono:

$$\boldsymbol{u}^{(1)} + \Delta \lambda \overline{\boldsymbol{u}}^{(2)} = \begin{cases} 1.976 \cdot 10^{-3} + \Delta \lambda \cdot 4.539 \cdot 10^{-5} \\ 2.487 \cdot 10^{-3} + \Delta \lambda \cdot 1.346 \cdot 10^{-4} \\ 2.888 \cdot 10^{-3} + \Delta \lambda \cdot 3.677 \cdot 10^{-4} \\ 3.398 \cdot 10^{-3} + \Delta \lambda \cdot 8.716 \cdot 10^{-4} \end{cases} \quad [m]$$

essendo $\bar{u}^{(2)}$ il vettore degli abbassamenti nodali ottenuti dall'equazione di equilibrio avendo però modificato come descritto la matrice K_w .

Il moltiplicatore dei carichi λ_2 cui corrisponde la plasticizzazione di una seconda molla si determina come:

$$\lambda_2 = \lambda_1 + \Delta \lambda_2 = \lambda_1 + \min\left\{\frac{u_{y,i} - u_i^{(1)}}{\overline{u}_i^{(2)}}; \quad i = 1, \dots, 3\right\}$$

e risulta:

$$\Delta \lambda_2 = \frac{u_{y,3} - \lambda_1 u_3^{(1)}}{\overline{u}_3^{(2)}} = 1.388 \quad ; \quad \lambda_2 = \lambda_1 + \Delta \lambda_2 = 16.743$$

Sotto le forze esterne $\lambda_2 f$ e $\lambda_2 m$ si ha quindi la plasticizzazione della molla 3 e gli spostamenti nodali sono:

$$\boldsymbol{u}^{(2)} = \boldsymbol{u}^{(1)} + \Delta \lambda_2 \overline{\boldsymbol{u}}^{(2)} = \begin{cases} 2.039 \cdot 10^{-3} \\ 2.673 \cdot 10^{-3} \\ 3.398 \cdot 10^{-3} \\ 4.608 \cdot 10^{-3} \end{cases} \quad [m]$$

Incrementando ancora le forze di $\Delta \lambda$ queste saranno equilibrate da una struttura analoga a quella di figura 4 ma adesso priva delle molle dei nodi 3 e 4, e quindi nella matrice K_w dovranno essere poste pari a 0 le 3° e 4° componente della diagonale principale. Sotto tale incremento di forze gli abbassamenti nodali sono:

$$\boldsymbol{u}^{(2)} + \Delta \lambda \overline{\boldsymbol{u}}^{(3)} = \begin{cases} 2.039 \cdot 10^{-3} - \Delta \lambda \cdot 6.900 \cdot 10^{-4} \\ 2.673 \cdot 10^{-3} + \Delta \lambda \cdot 8.700 \cdot 10^{-4} \\ 3.398 \cdot 10^{-3} + \Delta \lambda \cdot 3.375 \cdot 10^{-4} \\ 4.608 \cdot 10^{-3} + \Delta \lambda \cdot 6.351 \cdot 10^{-4} \end{cases} \quad [m]$$

essendo $\overline{u}^{(3)}$ il vettore degli abbassamenti nodali ottenuti dall'equazione di equilibrio avendo però modificato come descritto la matrice K_w .

Il moltiplicatore dei carichi λ_3 cui corrisponde la plasticizzazione di un'altra molla si determina come:

$$\lambda_3 = \lambda_2 + \Delta \lambda_3 = \lambda_2 + \min\left\{\frac{u_{y,i} - u_i^{(2)}}{\overline{u}_i^{(3)}}; \quad i = 1, 2\right\}$$

e risulta:

$$\Delta \lambda_3 = \frac{u_{y,2} - u_2^{(2)}}{\overline{u}_2^{(3)}} = 0.833 \quad ; \quad \lambda_3 = \lambda_2 + \Delta \lambda_3 = 17.576$$

Sotto le forze esterne $\lambda_3 f$ e $\lambda_3 m$ risultano quindi plasticizzate le molle 2, 3 e 4. In tale condizione la struttura non è più in grado di equilibrare incrementi delle forze applicate e quindi il moltiplicatore λ_3 coincide con quello ultimo.

Il risultato ottenuto mostra un ottimo accordo fra il valore fornito dal codice di calcolo e quello esatto. L'errore percentuale è infatti poco superiore allo 0.1% come di seguito mostrato:

$$err = 100 \cdot \frac{\left|\lambda_3 - \lambda_u\right|}{\lambda_3} = 0.14\%$$