

BARLETTA

ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE COSIMO PUTTILLI COMPLETAMENTO LOTTO 1

PROGETTO ESECUTIVO

GESTIONE PATRIMONIO E CONSULENZE IMPIANTI SPORTIVI INGEGNERIA E GESTIONE PATRIMONIO

RESPONSABILE: ING. EMILIANO CURI DIR. TECNICO: ING. VALERIO PETRINCA

PROGETTAZIONE ARCHITETTONICA E COORDINAMENTO DELLA PROGETTAZIONE: Arch. Chiara Di Michele

PROGETTAZIONE IMPIANTISTICA

F4 ENGINEERING studio associato PROGETTO IMPIANTI MECCANICI

PROGETTO IMPIANTI ELETTRICI E SPECIALI

ING. B. DI CAPUA

ING. D. MATTEUCCI

SCALA -	IMPIANTI MECCANICI - ELABORATI GENERALI ALLEGATO DI CALCOLO DEGLI IMPIANTI MECCANICI			
ELABORATO	REV	MODIFICHE	DATA	DISEGNATORE
	1	ESECUTIVO	28.06.2018	
IM.O.RT.002	2	ESECUTIVO	31.07.2018	

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

:: SOMMARIO ::

1	PREMESSA 2				
2	PR	ESCRIZIONI GENERALI E NORME DI RIFERIMENTO	3		
3	IM	PIANTO IDRANTI	4		
	3.1	INDICAZIONI GENERALI	4		
	<i>3.2</i>	DATI PROGETTUALI E CRITERI DI DIMENSIONAMENTO	4		
	3.3	DIMENSIONAMENTO DELL'IMPIANTO	5		
	3.3.	1 Vincoli di progetto			
	3.3.	2 Riassunto principali risultati			
	3.3.	3 Dati rete	5		
	3.3.	4 Dati tubazioni calcolo area favorita			
	3.3.	5 Dati tubazioni calcolo area sfavorita	8		
	3.3.	6 Dati idranti calcolo area favorita	9		
	3.3.	7 Dati idranti calcolo area sfavorita	9		
4	IM	PIANTO DI ADDUZIONE IDRICA	10		
	4.1	INTERVENTI SPOGLIATOIO ATLETI	10		
	4.2	INTERVENTI AREA STADIO	1 1		
5	IM	PIANTO DI SCARICO ACQUE NERE	12		
	<i>5.1</i>	INTERVENTI AREA STADIO	12		
6	IM	PIANTO DI SCARICO ACQUE METEORICHE	13		
	6.1	RACCOLTA ACQUE METEORICHE	14		
	6.2	DIMENSIONAMENTO TUBAZIONI	15		
7	CEI	NTRALE TERMICA E DI PRODUZIONE ACQUA CALDA SANITARIA	16		
	7.1	SISTEMA DI PRODUZIONE DELL'ACQUA CALDA SANITARIA	16		
	7.2	IMPIANTO SOLARE TERMICO	17		
	7.3	CIRCUITI IDRONICI	20		
	7.4	DISPOSITIVI DI SICUREZZA	20		
	7.4.	1 Circuito sanitario	20		
	7.4.	2 Circuito riscaldamento	2		
	7.4.	1 Circuito solare termico	2		

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA	
IM.0.RT.002	Allegato di calcolo degli impianti meccanici	

1 PREMESSA

Il presente elaborato ha lo scopo di descrivere gli interventi previsti nel progetto esecutivo degli impianti meccanici per il completamento e l'adeguamento funzionale dello Stadio Comunale "C. Puttilli" di Barletta.

Le opere previste, identificate attraverso gli elaborati allegati del progetto esecutivo, sono riconducibili essenzialmente alle seguenti categorie di lavori:

- Interventi area stadio:
 - Impianto idranti;
 - Impianto di adduzione idrica;
 - Impianto di irrigazione,
 - Impianto di scarico acque nere;
 - Impianto di scarico acque meteoriche.
- Interventi spogliatoio atleti:
 - Impianti terminali di riscaldamento e idrico-sanitario di adduzione e scarico per i bagni degli spogliatoi arbitri e del locale antidoping;
 - Centrale termica e di produzione acqua calda sanitaria.

La scelta di una marca e/o di un modello specifico per le apparecchiature di progetto non è vincolante. Tuttavia le specifiche di prodotto forniscono i requisiti minimi da prevedere per dotazioni tecnologiche da installare. Saranno proponibili prodotti con caratteristiche tecniche equivalenti o superiori a quelli individuati in progetto.

L'intervento ha per oggetto la fornitura in opera di tutti i materiali e gli apparecchi necessari per la realizzazione a regola d'arte degli impianti, comprensivi di eventuali altre opere accessorie necessarie per la realizzazione degli stessi, secondo quanto previsto dal progetto stesso.

Della presente relazione sono parte integrante gli elaborati grafici, gli allegati di calcolo e le specifiche tecniche e prestazionali dei componenti impiantistici, a cui si rimanda per ogni maggiore dettaglio sui materiali e apparecchiature utilizzate.

Le opere edili ed elettriche previste nell'intervento sono trattate in elaborati dedicati.

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

2 PRESCRIZIONI GENERALI E NORME DI RIFERIMENTO

Gli impianti ed i componenti devono essere realizzati a regola d'arte, secondo quanto prescritto dal DM 37/08 del 22 Gennaio 2008.

Le caratteristiche degli impianti e dei loro componenti devono essere conformi alla normativa generale (disposizioni legislative statali e degli enti territoriali e locali competenti) e tecnica di settore vigente alla data di presentazione della presente relazione tecnica, oltre che alle disposizioni impartite da enti e autorità locali (ACEA, INAIL, ...).

In sintesi, oltre alle leggi italiane in materia di contenimento dei consumi energetici, di sicurezza degli impianti, di prevenzione incendi, di sicurezza sul lavoro, di inquinamento atmosferico, delle acque ed acustico, vengono utilizzate per gli impianti meccanici le norme UNI, UNI EN, UNI ISO, o ASHRAE dove la normativa italiana ed europea risultasse carente.

Durante l'esecuzione degli impianti, si dovrà tener conto della normativa ufficiale italiana di standardizzazione e buona costruzione emessa dall'UNI, e dove questa risulti mancante, la normativa ISO e/o normative ufficiali emessi dagli Stati membri della CE.

In particolare si elencano le seguenti normative d'interesse generale.

- Impianti idrosanitari:
 - norme UNI
- Impianti e recipienti in pressione:
 - norme ASL/INAIL

Tutte le norme indicate sono comprensive degli eventuali aggiornamenti ed integrazioni.

I componenti degli impianti saranno tali da non determinare livelli sonori di fondo superiori a quanto riportato (DPCM 5 dicembre 1997 e Legge n. 443/95):

- 35 dB(A) LAmax con costante di tempo slow per i servizi a funzionamento discontinuo
- 25 dB(A) LAeq per i servizi a funzionamento continuo

Gli impianti elettrici a servizio delle dotazioni tecnologiche sopra riportate sono oggetto di installazione nell'ambito dello stesso intervento di adeguamento. Tali impianti sono trattati da elaborati dedicati.

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

3 IMPIANTO IDRANTI

3.1 INDICAZIONI GENERALI

La normativa vigente in materia di prevenzione incendi (D.M. 18 marzo 1996 coordinato con D.M. 6 giugno 2005) prescrive che gli impianti all'aperto con numero di spettatori superiore a 5.000 devono essere dotate di una rete idranti DN 45. L'impianto idrico antincendio per idranti deve essere costituito da una rete di tubazioni, realizzata preferibilmente ad anello, da cui derivare, con tubazioni di diametro interno non inferiore a 40 mm, attacchi per idranti DN 45. L'impianto deve avere caratteristiche idrauliche tali da garantire l'erogazione ai 3 idranti in posizione idraulica più sfavorita, assicurando a ciascuno di essi una portata non inferiore a 120 l/min con una pressione al bocchello di 2 bar. L'alimentazione deve assicurare una autonomia di almeno 60 min. L'impianto deve essere alimentato normalmente dall'acquedotto pubblico. Qualora l'acquedotto non garantisca la condizione di cui al punto precedente, dovrà essere realizzata una riserva idrica di idonea capacità. Il gruppo di pompaggio di alimentazione della rete antincendio deve essere realizzato da elettropompa con alimentazione elettrica di riserva (gruppo elettrogeno ad azionamento automatico) o da una moto pompa con avviamento automatico.

Il DM 20 dicembre 2012 *Regola tecnica di prevenzione incendi per gli impianti di protezione attiva contro l'incendio installati nelle attività soggette ai controlli di prevenzione incendi,* nel caso in esame, prescrive l'applicazione della norma UNI 10779 con i seguenti parametri:

2

Livello di pericolosità

Protezione esterna
 Non richiesta

Caratteristiche minime alimentazione idrica Singola

3.2 DATI PROGETTUALI E CRITERI DI DIMENSIONAMENTO

I criteri di dimensionamento della rete idranti all'aperto, secondo D.M. 18 marzo 1996 coordinato con D.M. 6 giugno 2005, realizzata con installazione di idranti a muro sono:

- simultaneo funzionamento di non meno di 3 idranti a muro nella posizione idraulicamente più sfavorevole con le seguenti prestazioni:
 - erogazione minima 120 l/min
 - pressione residua all'ingresso non minore di 0,2 MPa
 - durata prevista per il livello di pericolosità
- portata specifica garantita per almeno 60 min.

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

3.3 DIMENSIONAMENTO DELL'IMPIANTO

3.3.1 Vincoli di progetto

ALIMENTAZIONE

Tipo di calcolo: Hazen – Williams
Tipo di alimentazione: Gruppo di pompaggio

Capacità minima riserva idrica: 27,60 m³

IDRANTI

Tipo di rete: Ordinaria

Livello di pericolosità: 2

Durata minima riserva idrica: 60 min

Idranti previsti	Pressione residua minima	Portata minima	
Idiana previsa	[bar]	[l/min]	
Idranti a parete	2,00	120,0	

3.3.2 Riassunto principali risultati

ALIMENTAZIONE

Dati	Area favorita	Area sfavorita	u.m.
Pressione disponibile	3,50	3,50	bar
Portata disponibile	460,5	430,8	l/min
Numero idranti in funzione	3	3	
Numero totale idranti	28		

IDRANTI

Dati	Idrante favorito	Idrante sfavorito	u.m.
Numero	57	44	
Perdita totale	3,10	3,10	bar
Pressione residua	3,32	2,84	bar
Portata	145,10	132,60	l/min

RISERVA IDRICA

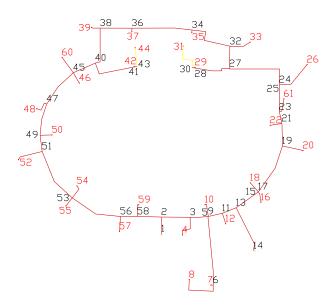
Dati	Valore	u.m.
Capacità effettiva	30,0	m³
Durata minima idranti	60	min

ATTACCHI AUTOPOMPA

n. nodo	Tipo attacco	DN attacco
14	Doppio	90

3.3.3 Dati rete

Nodo iniziale	Nodo finale	Lunghezza [m]	Descrizione	Ø nominale	Ø interno [mm]
1	2	13,1	UNI EN 12201:2012 - Tubi di PE - SDR 11	110	90,0
2	3	22,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6


IM.0.RT.002	Allegato di calcolo degli impianti meccanici
PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA

Nodo iniziale	Nodo finale	Lunghezza [m]	Descrizione	Ø nominale	Ø interno [mm]
3	5	14,0	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
4	3	18,9	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
5	6	54,1	UNI EN 12201:2012 - Tubi di PE - SDR 11	63	51,4
5	9	0,3	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
6	7	1,8	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
6	8	32,1	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
9	10	10,6	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
9	11	11,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
11	12	8,6	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
11	13	11,6	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
13	14	37,2	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
13	15	21,2	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
15	16	8,7	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
15	17	0,3	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
17	18	9,5	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
17	19	41,1	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
19	20	16,6	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
19	21	17,7	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
21	22	9,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
21	23	9,2	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
23	24	21,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
23	61	11,8	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
24	25	0,3	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
25	26	29,1	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
25	27	51,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
27	28	29,2	UNI EN 12201:2012 - Tubi di PE - SDR 11	63	51,4
27	32	17,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
28	29	0,5	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
28	30	2,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
30	31	24,6	UNI EN 10255:2007 - Tubi di acciaio - serie media	50	53,1
32	33	16,9	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
32	34	38,6	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
34	35	2,0	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
34	36	47,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
36	37	2,8	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
36	38	24,9	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
38	39	6,8	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
38	40	30,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
40	41	37,3	UNI EN 12201:2012 - Tubi di PE - SDR 11	63	51,4
40	45	18,9	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
41	42	0,5	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
41	43	2,1	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
43	44	14,8	UNI EN 10255:2007 - Tubi di acciaio - serie media	50	53,1
		,			
45	46	9,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

Nodo iniziale	Nodo finale	Lunghezza [m]	Descrizione	Ø nominale	Ø interno [mm]
45	47	32,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
45	60	14,8	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
47	48	11,9	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
47	49	25,2	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
49	50	9,3	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
49	51	12,8	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
51	52	20,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
51	53	44,5	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
53	54	11,6	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
53	55	8,1	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
53	56	41,9	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
56	57	11,8	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8
56	58	13,4	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
58	2	19,0	UNI EN 12201:2012 - Tubi di PE - SDR 11	90	73,6
58	59	10,1	UNI EN 12201:2012 - Tubi di PE - SDR 11	50	40,8

3.3.4 Dati tubazioni calcolo area favorita

Nodo iniz.	Nodo fin.	Lungh. [m]	Ø nomin.	Portata [l/min]	Velocità [m/s]	Dp tratto [bar]	Costante Hazen Williams
1	2	13,1	110	433,6	1,14	0,017	150
2	3	22,4	90	177,3	0,69	0,019	150
3	5	14,0	90	33,9	0,13	0,001	150
4	3	18,9	50	143,4	1,83	-0,218	150
5	9	0,3	90	33,9	0,13	0,000	150
9	11	11,4	90	33,9	0,13	0,000	150
11	13	11,6	90	33,9	0,13	0,000	150
13	15	21,2	90	33,9	0,13	0,001	150
15	17	0,3	90	33,9	0,13	0,000	150

IM.0.RT.002	Allegato di calcolo degli impianti meccanici
PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA

Nodo iniz.	Nodo fin.	Lungh. [m]	Ø nomin.	Portata [l/min]	Velocità [m/s]	Dp tratto [bar]	Costante Hazen Williams
17	19	41,1	90	33,9	0,13	0,001	150
19	21	17,7	90	33,9	0,13	0,001	150
21	23	9,2	90	33,9	0,13	0,000	150
23	24	21,4	90	33,9	0,13	0,001	150
24	25	0,3	90	33,9	0,13	0,000	150
25	27	51,4	90	33,9	0,13	0,002	150
27	32	17,4	90	33,9	0,13	0,001	150
32	34	38,6	90	33,9	33,9 0,13 0,001		150
34	36	47,4	90	33,9 0,13 0,002		150	
36	38	24,9	90	33,9 0,13 0,001		0,001	150
38	40	30,4	90	33,9	33,9 0,13 0,001		150
40	45	18,9	90	33,9	0,13	0,001	150
45	47	32,4	90	33,9	0,13	0,001	150
47	49	25,2	90	33,9	0,13	0,001	150
49	51	12,8	90	33,9	0,13	0,000	150
51	53	44,5	90	33,9	0,13	0,001	150
53	56	41,9	90	33,9	0,13	0,001	150
56	57	11,8	50	145,1	1,85	0,130	150
56	58	13,4	90	111,2	0,44	-0,004	150
58	2	19,0	90	256,3	1,00	-0,033	150
58	59	10,1	50	145,1	1,85	0,135	150

3.3.5 Dati tubazioni calcolo area sfavorita

Nodo iniz.	Nodo fin.	Lungh. [m]	Ø nomin.	Portata [l/min]	Velocità [m/s]	Dp tratto [bar]	Costante Hazen Williams
1	2	13,1	110	405,2 1,06 0,015		150	
2	3	22,4	90	194,7	0,76	0,023	150
3	5	14,0	90	194,7	0,76	0,013	150
5	9	0,3	90	194,7	0,76	0,000	150
9	11	11,4	90	194,7	0,76	0,009	150
11	13	11,6	90	194,7	0,76	0,009	150
13	15	21,2	90	194,7	0,76	0,017	150
15	17	0,3	90	194,7	0,76 0,000		150
17	19	41,1	90	194,7	0,76	0,035	150
19	21	17,7	90	194,7	0,76	0,014	150
21	23	9,2	90	194,7	0,76	0,010	150
23	24	21,4	90	194,7	0,76	0,017	150
24	25	0,3	90	194,7	0,76	0,000	150
25	27	51,4	90	194,7	0,76	0,045	150
27	28	29,2	63	139,1	1,12	0,103	150
27	32	17,4	90	55,6	0,22	0,001	150
28	30	2,4	50	139,1	1,78	0,018	150
30	31	24,6	50	139,1 1,05 0,093		0,093	120
32	34	38,6	90	55,6	0,22	0,004	150
34	36	47,4	90	55,6	0,22	0,004	150

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

Nodo iniz.	Nodo fin.	Lungh. [m]	Ø nomin.	Portata [l/min]	Velocità [m/s]	Dp tratto [bar]	Costante Hazen Williams
36	38	24,9	90	55,6	0,22	0,002	150
38	40	30,4	90	55,6	0,22	0,003	150
40	41	37,3	63	266,0	2,14	0,383	150
40	45	18,9	90	210,4	0,82	-0,017	150
41	42	0,5	50	133,4	1,70	0,034	150
41	43	2,1	50	132,6	1,69	0,014	150
43	44	14,8	50	132,6	1,00	0,047	120
45	47	32,4	90	210,4	0,82	-0,032	150
47	49	25,2	90	210,4	0,82	-0,026	150
49	51	12,8	90	210,4	0,82	-0,012	150
51	53	44,5	90	210,4	0,82	-0,043	150
53	56	41,9	90	210,4	0,82	-0,040	150
56	58	13,4	90	210,4	0,82	-0,012	150
58	2	19,0	90	210,4	0,82	-0,023	150

3.3.6 Dati idranti calcolo area favorita

Nodo	Descrizione	DN	K metrico	Portata [I/min]	Pressione residua [bar]	Perdite totali [bar]
4	BOCCIOLONE - Idranti a muro - art. 2 - Idrante a muro - Lancia Longjet-V	45	85	143,4	3,25	3,10
57	BOCCIOLONE - Idranti a muro - art. 2 - Idrante a muro - Lancia Longjet-V	45	85	145,1	3,32	3,10
59	BOCCIOLONE - Idranti a muro - art. 2 - Idrante a muro - Lancia Longjet-V	45	85	145,1	3,32	3,10

3.3.7 Dati idranti calcolo area sfavorita

Nodo	Descrizione	DN	K metrico	Portata [I/min]	Pressione residua [bar]	Perdite totali [bar]
31	BOCCIOLONE - Idranti a muro - art. 2 - Idrante a muro - Lancia Longjet-V	45	85	139,1	3,08	3,10
42	BOCCIOLONE - Idranti a muro - art. 2 - Idrante a muro - Lancia Longjet-V	45	85	133,4	2,86	3,10
44	BOCCIOLONE - Idranti a muro - art. 2 - Idrante a muro - Lancia Longjet-V	45	85	132,6	2,84	3,10

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

4 IMPIANTO DI ADDUZIONE IDRICA

Per il dimensionamento delle reti di distribuzione dell'acqua sono state tenute alla base dei calcoli le seguenti portate nominali e pressioni minime (UNI 9182):

Servizio	acqua fredda [l/s]	acqua calda [l/s]	unità di carico fredda [uc]	unità di carico calda [uc]	pressione minima [kpa]
Lavabo	0,10	0,10	1,5	1,5	100
Wc	0,10	-	5,0	-	100
Orinatoio	0,15	-	0,75	-	100
Doccia	0,15	0,15	3,0	3,0	100

I materiali delle tubazioni di adduzione sono i seguenti:

FLUIDO	MATERIALI	NORMA
Tubazioni interrate	Polietilene alta densità PE 100 PN 16	UNI 10910

I dati assunti per il dimensionamento delle reti di distribuzione interna dell'acqua fredda e calda sanitaria, si riferiscono essenzialmente a quanto previsto nella norma sperimentale UNI 9182.

Le portate nominali e le pressioni minime ai rubinetti di erogazione sono conformi alle appendici della citata norma, così come la velocità dell'acqua nelle tubazioni.

Il dimensionamento delle tubazioni è stato effettuato tenendo conto proprio delle portate e delle pressioni minime dei sanitari in funzione della velocità dell'acqua che si è voluta ottenere nei tubi.

Tale dimensionamento è stato eseguito valutando nei vari tratti il valore di velocità del fluido ottimale in funzione dei seguenti fattori:

- contenimento delle perdite di carico (circa 20 mm/mt);
- limitazione di fenomeni di corrosione erosione;
- trascinamento di eventuali bolle d'aria.

4.1 INTERVENTI SPOGLIATOIO ATLETI

TRATTO	RETE	UC	PORTATA (l/s)	VELOCITA' (m/s)	DIAMETRO DI CALCOLO (mm)	DIAMETRO INTERNO (mm)	DIAMETRO ESTERNO (mm)
locale	fredda	6,50	0,30	0,9	20,6	20,4	25,0
antidoping	calda	1,50	0,30	0,9	20,6	20,4	25,0
spogliatroio	fredda	15,50	0,78	1,5	25,7	32,6	40,0
arbitri	calda	13,50	0,68	1,5	24,0	32,6	40,0
loc. antidop.	fredda	22,00	1,13	1,5	31,0	32,6	40,0
+ 1 spogliatoio	calda	15,00	0,73	1,5	24,9	32,6	40,0

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

4.2 INTERVENTI AREA STADIO

TRATTO	UC	PORTATA (I/s)	VELOCITA' (m/s)	DIAMETRO DI CALCOLO (mm)	DIAMETRO INTERNO (mm)	DIAMETRO ESTERNO (mm)
ADD-01	9,00	0,45	1,2	21,9	26,0	32,0
ADD-02	19,00	0,93	1,5	28,1	32,6	40,0
ADD-01_02	28,00	1,30	1,5	33,2	32,6	40,0
ADD-03	19,00	0,93	1,5	28,1	32,6	40,0
ADD-04	30,00	1,30	1,5	33,2	32,6	40,0
ADD-03_04	49,00	1,90	1,7	37,7	40,8	50,0
ADD-05	9,00	0,45	1,5	19,5	32,6	40,0
ADD-06	19,00	0,93	1,5	28,1	32,6	40,0
ADD-05_06	28,00	1,30	1,5	33,2	32,6	40,0
ADD-07	19,00	0,93	1,5	28,1	32,6	40,0
ADD-08	30,00	1,30	1,5	33,2	32,6	40,0
ADD-07_08	49,00	1,90	1,7	37,7	40,8	50,0
ADD-09	19,00	0,93	1,5	28,1	32,6	40,0
ADD-10	9,00	0,45	1,2	21,9	26,0	32,0
ADD-09_10	28,00	1,30	1,5	33,2	32,6	40,0
ADD-11	30,00	1,30	1,5	33,2	32,6	40,0
ADD-12	19,00	0,93	1,5	28,1	32,6	40,0
ADD-11_12	49,00	1,90	1,7	37,7	40,8	50,0
ADD-13	298,50	6,45	2,3	59,8	61,4	75,0
ADD-14	153,00	4,25	2,0	52,0	51,4	63,0
тот	682,50	10,83	2,4	75,8	73,6	90,0

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

5 IMPIANTO DI SCARICO ACQUE NERE

L'impianto di scarico deve garantire:

- una evacuazione rapida del flusso, l'assenza di depositi e di residui, la tenuta idraulica e la tenuta ai gas per poter salvaguardare la salubrità degli ambienti e la salute degli occupanti;
- i livelli di pressione di progetto durante il funzionamento consentendo il reintegro dell'aria trascinata e spinta durante il deflusso.

Lo smaltimento delle acque nere è stato progettato in conformità alla UNI EN 12056-2; si prevede il sistema di smaltimento con colonna di scarico unica e diramazioni di scarico riempite parzialmente, dimensionate per un grado di riempimento uguale a 0,5 (50%).

I materiali delle tubazioni di smaltimento acque nere saranno i seguenti:

FLUIDO	MATERIALI	NORMA
Tubi in PVC per scarichi interni ai blocchi	PVC	UNI EN 1329-1
Tubi in PVC per scarichi interrati non in pressione	PVC	UNI EN 1401-1

Lo smaltimento delle acque nere è stato progettato in conformità alla UNI EN 12056, in funzione della portata dell'acqua di scarico dei sanitari (unità di scarico), del grado di riempimento dei tubi e della pendenza delle tubazioni.

Per il dimensionamento delle tubazioni su cui confluiscono più scarichi e per i collettori in genere si è usata la formula:

$$Q_W = k \times \sqrt{\sum DU}$$

dove:

- QW è la portata d'acqua risultante a valle delle giunzioni,
- K è il coefficiente di contemporaneità, posto pari a 1 per uso frequente.

5.1 INTERVENTI AREA STADIO

Riferimento	ΣDU	Qww,calc	Qww,prog	pendenza i [collett.]	riempimento w [collett.]	DN di progetto	Qmax
		[lt/s]	[lt/s]	[%]	[%]		[lt/s]
M+F	21,2	4,60	4,60	1,00	50	150	7,70
M+inf	12,2	3,49	3,49	1,00	50	150	7,70
M+inf+M+F	33,4	5,78	5,78	1,00	50	150	7,70

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

6 IMPIANTO DI SCARICO ACQUE METEORICHE

La portata di scorrimento delle acque meteoriche è stata determinata, secondo UNI EN 12056-3. La portata di acque meteoriche da far defluire da una superficie deve essere calcolata mediante la formula:

$$Q = r \cdot A \cdot C$$

dove:

- Q è la portata d'acqua, in litri al secondo (l/s)
- r è l'intensità di precipitazione, in litri al secondo per metro quadrato l/(s m²)
- A è l'area effettiva della copertura, in metri quadrati (m²)
- C è il coefficiente di scorrimento (preso = 1,0 salvo quando diversamente richiesto da regolamenti e procedure di installazione nazionali o locali), adimensionale

La rete di scarico delle acque bianche viene quindi calcolata utilizzando i seguenti parametri:

- Intensità di precipitazione 0,01 l/(s mq)
- Coefficiente di scorrimento

La capacità idraulica dei collettori di scarico suborizzontali è calcolata, secondo la norma UNI EN 752-4 utilizzando l'equazione di Colebrook-White:

$$v = -2\sqrt{2gDJ_E} \log_{10} \left(\frac{k}{3.71D} + \frac{2.51v}{D\sqrt{2gDJ_E}} \right)$$

dove:

- V è la velocità media del flusso nella sezione retta del condotto è [m/s]
- g è l'accelerazione di gravità [m/s2]
- D = 4Rh con Rh raggio idraulico (sezione bagnata divisa per il perimetro bagnato) [m]
- JE è il gradiente idraulico
- k è la scabrezza idraulica della tubazione, [m];
- v è la viscosità cinematica del fluido, [m2/s].

I materiali delle tubazioni di adduzione sono i seguenti:

FLUIDO	MATERIALI	NORMA
Tubi in PVC per scarichi interrati non in pressione	PVC	UNI EN 1401-1

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

6.1 RACCOLTA ACQUE METEORICHE

NR.	Superficie scolante	Coeff. di afflusso	Portata (I/s)
RETE ESTERNA			
Caditoia 01	346,52	1,00	3,47
Caditoia 02	262,07	1,00	2,62
Caditoia 03	237,07	1,00	2,37
Caditoia 04	180,12	1,00	1,80
Caditoia 05	210,36	1,00	2,10
Caditoia 06	648,10	1,00	6,48
Caditoia 07	953,30	1,00	9,53
Caditoia 08	20,00	1,00	0,20
Caditoia 09	465,20	1,00	4,65
Caditoia 10	20,00	1,00	0,20
Caditoia 11	520,37	1,00	5,20
Caditoia 12	20,00	1,00	0,20
Caditoia 13	581,61	1,00	5,82
Caditoia 14	295,83	1,00	2,96
Caditoia 15	20,00	1,00	0,20
Caditoia 16	242,56	1,00	2,43
Caditoia 17	20,00	1,00	0,20
Caditoia 18	265,19	1,00	2,65
Caditoia 19	20,00	1,00	0,20
Caditoia 20	254,23	1,00	2,54
Caditoia 21	281,27	1,00	2,81
Caditoia 22	20,00	1,00	0,20
Caditoia 23	382,60	1,00	3,83
Caditoia 24	267,28	1,00	2,67
Caditoia 25	202,80	1,00	2,03
Caditoia 26	20,00	1,00	0,20
Caditoia 27	144,55	1,00	1,45
Caditoia 28	20,00	1,00	0,20
Caditoia 29	254,30	1,00	2,54
Caditoia 30	20,00	1,00	0,20
Caditoia 31	305,14	1,00	3,05
Caditoia 32	20,00	1,00	0,20
Caditoia 34	307,29	1,00	3,07
Caditoia 35	367,19	1,00	3,67
Caditoia 36	192,58	1,00	1,93
Caditoia 37	445,98	1,00	4,46
Caditoia 38	192,76	1,00	1,93
Caditoia 39	20,00	1,00	0,20
Caditoia 40	272,41	1,00	2,72
Caditoia 40	20,00	1,00	0,20
Caditoia 41	441,56	1,00	4,42
Caditoia 42	20,00	1,00	0,20
Caditoia 43	473,44	1,00	4,73

IM.0.RT.002	Allegato di calcolo degli impianti meccanici	
PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA	

6.2 DIMENSIONAMENTO TUBAZIONI

NR.	Portata (I/s)	Pendenza (cm/m)	Riempimento	Tubazione	Portata max tubazione (I/s)
RETE ESTERNA					
TR 01	3,47	0,5	50%	PVC De160	6,00
TR 02	6,09	0,5	50%	PVC De200	10,91
TR 03	8,46	0,5	50%	PVC De200	10,91
TR 04	10,26	0,5	50%	PVC De200	10,91
TR 05	12,36	0,5	50%	PVC De250	19,71
TR 06	80,37	0,5	50%	PVC De500	123,26
TR 07	86,85	0,5	50%	PVC De500	123,26
TR 08	96,38	0,5	50%	PVC De500	123,26
TR 09	4,85	0,5	50%	PVC De160	6,00
TR 10	10,26	0,5	50%	PVC De200	10,91
TR 11	16,27	0,5	50%	PVC De250	19,71
TR 12	19,23	0,5	50%	PVC De250	19,71
TR 13	21,86	0,5	50%	PVC De315	36,45
TR 14	24,71	0,5	50%	PVC De315	36,45
TR 15	27,45	0,5	50%	PVC De315	36,45
TR 16	30,26	0,5	50%	PVC De315	36,45
TR 17	34,29	0,5	50%	PVC De315	36,45
TR 18	130,67	0,5	70%	PVC De500	200,72
TR 19	2,67	0,5	50%	PVC De160	6,00
TR 20	4,70	0,5	50%	PVC De160	6,00
TR 21	1,65	0,5	50%	PVC De160	6,00
TR 22	9,09	0,5	50%	PVC De200	10,91
TR 23	12,34	0,5	50%	PVC De250	19,71
TR 24	3,07	0,5	50%	PVC De160	6,00
TR 25	19,29	0,5	50%	PVC De250	19,71
TR 26	21,21	0,5	50%	PVC De315	36,45
TR 27	25,67	0,5	50%	PVC De315	36,45
TR 28	27,60	0,5	50%	PVC De315	36,45
TR 29	30,52	0,5	50%	PVC De315	36,45
TR 30	4,62	0,5	50%	PVC De160	6,00
TR 31	40,07	0,5	50%	PVC De400	68,56

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

7 CENTRALE TERMICA E DI PRODUZIONE ACQUA CALDA SANITARIA.

7.1 SISTEMA DI PRODUZIONE DELL'ACQUA CALDA SANITARIA

Per il dimensionamento del sistema di produzione dell'acqua calda sanitaria, secondo UNI 8192-2014, sono stati considerati i seguenti dati:

- il consumo orario di acqua calda q_M [I/h] alla temperatura T_m nel periodo di punta d_p considerato;
- la durata in ore del periodo di punta d_ρ;
- la durata in ore del periodo di preriscaldamento P_r dell'acqua contenuta nel boiler;
- i valori della temperatura T_c dell'acqua calda accumulata e dell'acqua fredda T_f in entrata.

Il volume in litri del preparatore si determina con:

$$V_{c} = \frac{q_{M}xd_{p}(T_{m} - T_{f})}{(d_{p} + P_{r})}x\frac{P_{r}}{(T_{c} - T_{f})}$$

La potenzialità termica del serpentino si determina con:

$$W = \frac{q_M x d_p \left(T_m - T_f\right)}{\left(d_p + P_r\right)} x 1,163$$

Tipologia utenza				
Centri sportivi				
Dotazione	n	l/utilizzo	turni	l/turno
Docce	18	50	3	2700
Rubinetti	11	10	6	660
TOTALE				3 360
Dati sistema				
Consumo totale nel periodo di punta		Q	3 360	l/turno
Consumo orario		qM	6 720	l/h
Periodo di punta		dp	0,5	h
Periodo di preriscaldo		Pr	1,5	h
Temperatura di utilizzo		Tm	40	°C
Temperatura di rete		Tf	10	°C
Temperatura di accumulo		Tc	60	°
Risultati				
Volume lordo del preparatore		Vc	1 512	lt
Potenza termica del serpentino		W	59	kW

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

7.2 IMPIANTO SOLARE TERMICO

Numero totale di collettori solari 7

Superficie totale di apertura dei collettori 15,40 m2
Consumo annuale di energia elettrica 254 kWh
Percentuale di copertura per acqua sanitaria 63,4 %

Servizio acqua calda sanitaria

Mese	QW,solare [kWh]	QpW con solare [kWh]	QpW senza solare [kWh]	%cop,W [%]
Gennaio	220	911	1130	21,8
Febbraio	328	691	1023	35,9
Marzo	610	493	1115	61,2
Aprile	752	303	1067	78,7
Maggio	851	218	1083	87,9
Giugno	921	97	1030	100,0
Luglio	937	105	1047	100,0
Agosto	939	101	1050	100,0
Settembre	704	317	1035	76,1
Ottobre	601	480	1093	61,5
Novembre	300	770	1073	31,3
Dicembre	130	1000	1126	12,9
TOTALI	7294	5486	12873	63,4

Legenda simboli

QW, solare Producibilità solare pannelli per acqua calda sanitaria

QpW con solare Fabbisogno di energia primaria per acqua sanitaria, con il contributo termico solare

QpW senza solare Fabbisogno di energia primaria per acqua sanitaria, senza il contributo termico solare

%cop,W Percentuale di copertura solare rispetto al fabbisogno di energia in uscita dalla generazione per acqua calda sanitaria

Sottocampo:

Dati posizionamento pannelli

Orientamento rispetto al sud $$\gamma$$ 0,0 ° Inclinazione rispetto al piano orizzontale $$\beta$$ 24,0 ° Coefficiente di riflettenza (albedo) 0,10

Dati collettore solare

Collettore solare utilizzato RIELLO/CSAL 25 R/CSAL 25 R

Numero di collettori solari 7

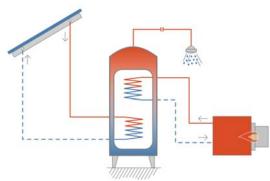
Superficie di apertura del singolo collettore 2,20 m2 Superficie lorda del singolo collettore 2,43 m2 Rendimento del collettore a perdite nulle 0,77 η0 Coefficiente di perdita lineare a1 3,790 W/m2K Coefficiente di perdita quadratico W/m2K2 a2 0,011

Coefficiente di modifica angolo di incidenza IAM 0,92

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

Producibilità solare del sottocampo

Mese	Ir [kWh/m2]	QW,solare [kWh]
Gennaio	58,8	220
Febbraio	73,1	328
Marzo	121,4	610
Aprile	150,3	752
Maggio	170,1	851
Giugno	194,3	921
Luglio	214,0	937
Agosto	202,5	939
Settembre	132,8	704
Ottobre	115,6	601
Novembre	66,5	300
Dicembre	45,7	130
TOTALI	1545,2	7294


Legenda simboli

Ir Irradiazione solare captata dai collettori solari
QW,solare Producibilità solare pannelli per acqua sanitaria

Configurazione impianto

Accumulo acqua calda sanitaria

Accumulo riscaldamento -

	1500,00	litri
	0,15	
	12,70	W/K
ηΙοορ	0,80	
	127	W
	2000	h
	ηΙοορ	0,15 12,70 ηloop 0,80

ad integrazione termica

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

Dettagli impianto solare termico

Mese	Ir [kWh]	Qsolare [kWh]	ηsolare [kWh]	QW,aux,solare [kWh]
Gennaio	905,4	220	24	10
Febbraio	1126,4	328	29	12
Marzo	1870,2	610	33	20
Aprile	2314,0	752	32	25
Maggio	2619,1	851	33	28
Giugno	2992,8	921	31	32
Luglio	3295,8	937	28	35
Agosto	3119,0	939	30	33
Settembre	2045,0	704	34	22
Ottobre	1780,8	601	34	19
Novembre	1024,6	300	29	11
Dicembre	703,5	130	19	8
TOTALI	23796,7	7294	31	254

Legenda simboli

Ir Irradiazione solare captata dall'impianto solare

Qsolare Producibilità solare dei pannelli nsolare Rendimento dell'impianto solare

QW,aux,solare Consumo energia elettrica per acqua sanitaria

Dettagli dimensionamento impianto solare (servizio acqua sanitaria)

Mese	Producibilità totale [kWh]	Carico acqua sanitaria [kWh]	Eccedenza [kWh]	% di copertura del carico [%]
Gennaio	220	1011	0	21,8
Febbraio	328	915	0	35,9
Marzo	610	997	0	61,2
Aprile	752	955	0	78,7
Maggio	851	969	0	87,9
Giugno	938	921	16	100,0
Luglio	1018	937	82	100,0
Agosto	984	939	45	100,0
Settembre	704	925	0	76,1
Ottobre	601	977	0	61,5
Novembre	300	960	0	31,3
Dicembre	130	1007	0	12,9
TOTALI	7437	11513	143	63,4

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

7.3 CIRCUITI IDRONICI

Il dimensionamento della rete idronica a servizio del riscaldamento è stato eseguito valutando nei vari tratti il valore di velocità del fluido ottimale in funzione dei seguenti fattori:

- contenimento delle perdite di carico (circa 20 ÷ 30 mm/mt c.a.)
- limitazione di fenomeni di corrosione erosione
- trascinamento di eventuali bolle d'aria

Il dimensionamento delle tubazioni è stato effettuato considerando un ΔT 10 °C e contendo la velocità dell'acqua nei circuiti in 1,5 – 2,0 m/s. Ai risultati ottenuti si è associato il diametro commerciale più vicino a quello di calcolo.

Tubazione	Potenzialità	delta T	portata	portata	velocità	diametro, calc	diame	etro, prog
	W	°C	l/h	l/s	m/s	mm	int	est
CALDAIA	105 000	10	9 030	2,51	1,2	51,6	53,8	2"
EP 01 - ACS	60 000	10	5 160	1,43	1,1	40,7	42,5	1"1/2
EP 02 - RAD	45 000	10	3 870	1,08	1,0	37,0	36,6	1"1/4
SOLARE TERMICO			560	0,16	0,7	16,8	16,6	1/2"

7.4 DISPOSITIVI DI SICUREZZA

Si riportano di seguito le tabelle per il dimensionamento di vasi di espansione, tubo di espansione e valvola di sicurezza previsti in progetto.

7.4.1 Circuito sanitario

DATI CARATTERISTICI DELL'IMPIANTO			
Temperatura acqua fredda di alimentazione		15,00	°C
Temperatura acqua medda di alimentazione	nT1	0,15	
Temperatura di accumulo dell'acqua calda	T2	60,00	°C
Temperatura di decamalo dell'acqua calda	nT2	1,70	
Volume dell'acqua riscaldata	Vsp	1 500,00	lt
Pressione di precarica vaso lato gas	P0	2,50	bar
Pressione di taratura valvola sicurezza	Pvs	4,50	bar
Pressione iniziale lato acqua	Par	2,50	bar
Pressione massima di esercizio dell'impianto lato gas	Per	4,00	bar
CALCOLO DEL VOLUME DEL VASO DI ESPANSIONE			
Vn ≥ e Vsp / (1 - Pa / Pe)			
Pressione assoluta iniziale lato gas	Pa	3,50	bar
Pressione assoluta finale lato gas	Pe	5,00	bar
Coefficiente di espansione dell'acqua	е	0,02	
Volume nominale del vaso di espansione	Vn	77,50	lt
Volume reperibile vaso di espansione	V	80,00	lt

IM.0.RT.002	Allegato di calcolo degli impianti meccanici
PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA

CALCOLO DEL DIAMETRO DELLA VALVOLA DI SICUREZZA				
$D = \sqrt{(4A/n)}$				
Potenza nominale dell'utenza servita		Pn	90,00	kW
Portata di scarico	Q = P / 0,58	Q	155,17	kg/h
Pressione assoluta di taratura della valvola di sicurezza		Ptar	6,00	bar
Sovrappressione			0,35	bar
Pressione di scarico		p	6,35	bar
Fattore di pressione di scarico		F	0,54	
Coefficiente di efflusso	dati costruttore	K	0,79	
Area della minima sezione trasversale netta	A = 0,005 Q F / 0,9 K	Α	0,59	cmq
Diametro interno		D	8,66	mm
Ø Orifizio		D	15,00	mm
Diametro nominale commerciale		D	1/2"	Ø

7.4.2 Circuito riscaldamento

DATI CARATTERISTICI DELL'IMPIANTO				
Potenza nominale dell'utenza servita		Pn	105,00	kW
Contenuto acqua dell'impianto		C imp	494,25	lt
Temperatura massima di esercizio impianto		T m	90,00	°C
Pressione atmosferica		P atm	1,00	bar
Dislivello tra vaso e punto più alto dell' impianto		Himp	3,50	m
Pressione idrostatica assoluta nel punto di installazione del vaso		P1a	1,65	bar
Pressione assoluta iniziale di precarica del v.e.		P1	2,50	bar
Pressione max esercizio impianto		Pmax rel	4,00	bar
Pressione assoluta di taratura della valvola di sicurezza		Ptar	3,50	bar
Dislivello tra valvola e vaso	(Hvas-Hval)	dVV	1,00	m
Pressione assoluta finale		P2	3,40	bar

Pressione di taratura della valvola di sicurezza, diminuita del dislivello di quota esistente tra il vaso e la valvola di sicurezza, se quest'ultima è più in basso, ovvero aumentata se la valvola è posta più in alto

	-			
CALCOLO DEL VOLUME DI ESPANSIONE				
Ve = Va n / 100				
Volume totale dell'impianto		Va	494,25	lt
n = 0,31 + 3,9 x 10-4 x Tm2		n	3,47	
Volume di espansione		Ve	17,15	lt

CALCOLO DEL VOLUME DEL VASO DI ESPANSIONE			
Vn ≥ Ve / (1 - P1 / P2)			
Volume di espansione	Ve	17,15	lt
Pressione assoluta iniziale di precarica del v.e.	P1	2,50	bar
Pressione assoluta finale	P2	3,40	bar
Volume nominale del vaso di espansione	Vn	64,77	lt

Volume reperibile vaso di espansione	V	80,00	lt	ì

PROGETTO ESECUTIVO	ADEGUAMENTO FUNZIONALE DELLO STADIO COMUNALE "C. PUTTILLI" DI BARLETTA
IM.0.RT.002	Allegato di calcolo degli impianti meccanici

CALCOLO DEL DIAMETRO DEL TUDO DI ECDANCIONE				
CALCOLO DEL DIAMETRO DEL TUBO DI ESPANSIONE $D = \sqrt{(P / 1,163)}$				
Potenza nominale dell'utenza servita		Pn	105,00	kW
Diametro interno minimo del tubo di espansione		D min	18,00	mm
Diametro interno del tubo di espansione		D	18,00	mm
		1	•	
Diametro interno commerciale		D	22,20	mm
Diametro nominale commerciale		D	3/4"	Ø
	•	•	•	
CALCOLO DEL DIAMETRO DELLA VALVOLA DI SICUREZZA				
$D = \sqrt{(4A / \pi)}$				
Potenza nominale dell'utenza servita		Pn	105,00	kW
Portata di scarico	Q = P / 0.58	Q	181,03	kg/h
Pressione assoluta di taratura della valvola di sicurezza		Ptar	3,50	bar
Sovrappressione			0,35	bar
Pressione di scarico		р	3,85	bar
Fattore di pressione di scarico		F	0,80	
Coefficiente di efflusso	dati costruttore	К	0,79	

Ø Orifizio	D	15,00	mm
Diametro nominale commerciale	D	1/2"	Ø

A = 0,005 Q F / 0,9 K

Α

D

1,02

11,39

cmq

mm

7.4.1 Circuito solare termico

Area della minima sezione trasversale netta

Diametro interno

CALCOLO DEL VOLUME DEL VASO D'ESPANSIONE	
Formula	
Vu = (Vc*e+Vp)*k	
Vc = contenuto di fluido nel circuito solare (lt) =	26,7
e = coefficiente di dilatazione del fluido nel circuito =	0,070
Vp = contenuto di fluido nei pannelli solari (lt) =	14,0
k = costante di sicurezza =	1,1
Vu = volume utile vaso espansione (lt) =	17,5
Formula	
Vn = Vu* (Pf+1) / (Pf-Pi)	
Vu = volume utile vaso espansione (lt) =	17,46
Pi = Pressione iniziale o precarica del vaso (bar) =	2,5
Pf = Pressione finale = Pressione Valv.sicurezza - 0,5 bar (bar) =	6,5
Vn = volume nominale del vaso di espansione (lt) =	32,7

