

FERROTRAMVIARIA S.p.A.

REGIONE PUGLIA - ASSESSORATO ALLE INFRASTRUTTURE STRATEGICHE E MOBILITA' Delibera G.R. n°744 del 13/05/2008 Decisione UE (C) 2012 n.2740 del 27/04/2012

GRANDE PROGETTO: "ADEGUAMENTO **FERROVIARIO** DELL'AREA METROPOLITANA NORD-BARESE" (D.G.R. PUGLIA DEL 12/02/2008, N 146)

LINEA BARI - BARLETTA: OPERE DI RADDOPPIO, VELOCIZZAZIONE E POTENZIAMENTO NELLA TRATTA CORATO - BARLETTA, CON L'INTERRAMENTO DEL TRACCIATO FERROVIARIO NELL'ABITATO DI ANDRIA E L'INTERCONNESSIONE CON RFI NELLA STAZIONE RFI DI **BARLETTA E BARI**

PROGETTO DEFINITIVO

Progettazione e Coordinamento

00162 ROMA P. WINCKELMANN 12 70123 BARI VIA NAPOLI 161 P.IVA 00898931001 DIRETTORE TECNICO ING. BERNARDO GRILLI

> RESPONSABILE TECNICO ING. ANTONIO DI LEO

BARLETTA C.LE - BARLETTA SCALO

GEOTECNICA-GEOLOGIA

RAPPORTO INDAGINI

SCALA RFV. DATA E AGGIORNAMENTI 30/06/2014

GE-GT 02

FILES: GE-GT 02.doc De Bari - Garrasi REDAZIONE

30/06/14 DATA EMISSIONE

PROGETTO DEFINITIVO

GRANDE PROGETTO: "ADEGUAMENTO FERROVIARIO DELL'AREA METROPOLITANA NORD-BARESE" (D.G.R. PUGLIA DEL 12/02/2008, N. 146)

BARLETTA CENTRALE - BARLETTA SCALO

RAPPORTO INDAGINI

4					
3					
2					
1					
0	30.06.2014	EMISSIONE	DE BARI -GARRASI	DI LEO	GRILLI
REV	DATA	DESCRIZIONE	REDATTO	CONTROLLATO	APPROVATO

NOTA PRELIMINARE

Il presente fascicolo comprende i risultati delle indagini in situ eseguite dalla ditta SONDAG s.r.l. di Bari nelle aree d'interesse, sulla scorta dell'apposito programma redatto dai progettisti.

E' prassi comune che l'esecutore delle indagini premetta ai risultati delle stesse una breve descrizione della metodologia di prova, talora accompagnandola da elaborazioni che correlano il dato misurato al dato geotecnico, generalmente prodotte in modo automatico (e quindi acriticamente) dallo stesso software di acquisizione dei dati di campagna.

Ancorché talora utili e/o appropriate, tali informazioni non possono in alcun modo configurarsi come attività progettuale, per cui si ribadisce che il passaggio dal dato misurato al parametro di progetto viene fatto nell'ambito della relazione geotecnica, che potrà anche far proprie, in tutto o in parte, le elaborazioni prodotte nel presente fascicolo.

Le indagini sono allegate al fascicolo nell'ordine seguente:

- 1. STRATIGRAFIE DEI SONDAGGI E FOTO DELLE CASSETTE (redatte a cura del Dott. Geol. Claudia De Bari)
- 2. PROVE PENETROMETRICHE STATICHE CPT
- 3. PROVE PENETROMETRICHE DINAMICHE SCPT
- 4. PROVE SISMICHE DOWN-HOLE

Rapporto indagini Pagina 2 di 48

PREMESSA

Nel mese di maggio 2014 su incarico della Società Ferrotramviaria Engineering, la Ditta SONDAG srl, ha eseguito delle indagini geognostiche nelle stazioni di Barletta Scalo e Barletta Centrale.

Le indagini sono consistite nell'esecuzione di 4 sondaggi meccanici a carotaggio continuo (S1 \div S4) di profondità comprese tra 15 m e 40 m, 1 prova penetrometrica statica (CPT1), spinta fino alla profondità di 8.00 m e 4 prove penetrometriche dinamiche continue a punta conica (SCPT1 \div SCPT4).

I due sondaggi di maggior profondità (40 m) sono stati attrezzati per l'esecuzione di prove sismiche down-hole (DH1 - DH2).

Si riportano le sigle e la distribuzione delle indagini:

Barletta Scalo	S1-DH1	1 = 40.00 m
	S2	1 = 20.00 m
	S 3	1 = 15.00 m
	CPT1	8.00 m
	SCPT1÷SCPT3	≈ 8.0 m
Barletta Stazione	S4-DH2	1 = 40.00 m
	SCPT4	≈ 8.0 m

Di seguito si relaziona:

- □ sulla metodologia di indagine;
- u sui risultati ottenuti (dati di prova ed elaborazioni).

Rapporto indagini Pagina 3 di 48

Rapporto indagini Pagina 4 di 48

SONDAGGIO S1-DH1 PERFORAZIONE A CAROTAGGIO CONTINUO

INDAGINI GEOGNOSTICHE RELATIVE AL GRANDE PROGETTO: "ADEGUAMENTO FERROVIARIO DELL'AREA METROPOLITANA NORD BARESE"

(DGR Puglia del 12/02/2008, n. 146)
FERMATA DI BARLETTA SCALO

REDATTA DA: Dott. geol. Claudia de BARI

PAG. I

CAROTIERE	CORONA	PROFONDITA'		LITOLOGIA	DESCRIZIONE LITOLOGICA	Spessore (m)	% Carotaggio	R.Q.D.	Strumentazione in foro	Prove in foro	NOTE	CASSETTE
		1 2	2.00		Riporto Depositi alluvionali sabbiosi con ciottoli	1.50	100%					
		3 4 5			Limo con argilla sabbiosa da ocraceo a rossastro				80 mm			1
CAROTIERE DOPPIO ∅= 121 mm		6 7 8			ocraceo a rossastro	9.50	90%	-	prova DOWN HOLE Ø=8	DOWN HOLE		2
RE DO	WIDIA	9 10	9.50							NWOO	CL PRELIEVO DI CAMPIONE INDISTURBATO	
CAROTIE		11-	11.50						zionato p	prova		
		12- 13- 14- 15			Argilla e argilla sabbiosa grigio verdastra	5.10	80%		Tubo in PVC condizionato per			3
		16	16.60									
		17	20.00		Sabbie e sabbie limose da ocracee a rossastre	3.40	100%	-				4

Rapporto indagini Pagina 5 di 48

QUOTA s.l.m. 16.75 m

DATA ESECUZIONE: 15/04/2014

SONDAGGIO S1 - DH1 PERFORAZIONE A CAROTAGGIO CONTINUO

INDAGINI GEOGNOSTICHE RELATIVE AL GRANDE PROGETTO: "ADEGUAMENTO FERROVIARIO DELL'AREA METROPOLITANA NORD BARESE"

(DGR Puglia del 12/02/2008, n. 146)

FERMATA DI BARLETTA SCALO

ESECUTORE: SONDAG s.r.l. - BARI

21- WIDIN WIDIN 22- 23- 24- 25- 26- 27- 28- 29- 29- 30- 31- 32- 33- 34- 35	CAROTIERE	PROFONDITA (m)	LITOLOGIA	DESCRIZIONE LITOLOGICA	Spessore (m)	% Carotaggio	R.Q.D.	Strumentazione in foro	Prove in foro	NOTE	CASSETTE
MIDIA WIDIA		22-						u			5
31 - 32 - 33 - 34 - 35 - 35.50	Ø	26			15.50	100%	-	irova DOWN HOLE \varnothing = $80~\mathrm{mn}$	prova DOWN HOLE		6
35.50 F	CAROTIE	31- 32- 33- 34-						ibo in PVC condizionato per p			7
36		37 38 39		Argille grigio azzurre	4.50	100%		L L			8

Rapporto indagini Pagina 6 di 48

SONDAGGIO 1 - DOWN HOLE 1

INDAGINI GEOGNOSTICHE RELATIVE ALL'ADEGUAMENTO FERROVIARIO DELLE FERROVIE NORD BARESI FERMATA DI BARLETTA SCALO

ESECUTORE:SONDAG S.R.L.

Cassetta catalogatrice n.1 da 0 a 5 m

Cassetta catalogatrice n.3 da 10 a 15 m

Cassetta catalogatrice n.2 da 5 a 10 m

Cassetta catalogatrice n.4 da 15 a 20 m

Dott. geol. Claudia de Bari

Rapporto indagini Pagina 7 di 48

SONDAGGIO 1 - DOWN HOLE 1

INDAGINI GEOGNOSTICHE RELATIVE ALL'ADEGUAMENTO FERROVIARIO DELLE FERROVIE NORD BARESI FERMATA DI BARLETTA SCALO

ESECUTORE:SONDAG S.R.L.

Cassetta catalogatrice n.5 da 20 a 25 m

Cassetta catalogatrice n.6 da 30 a 35 m

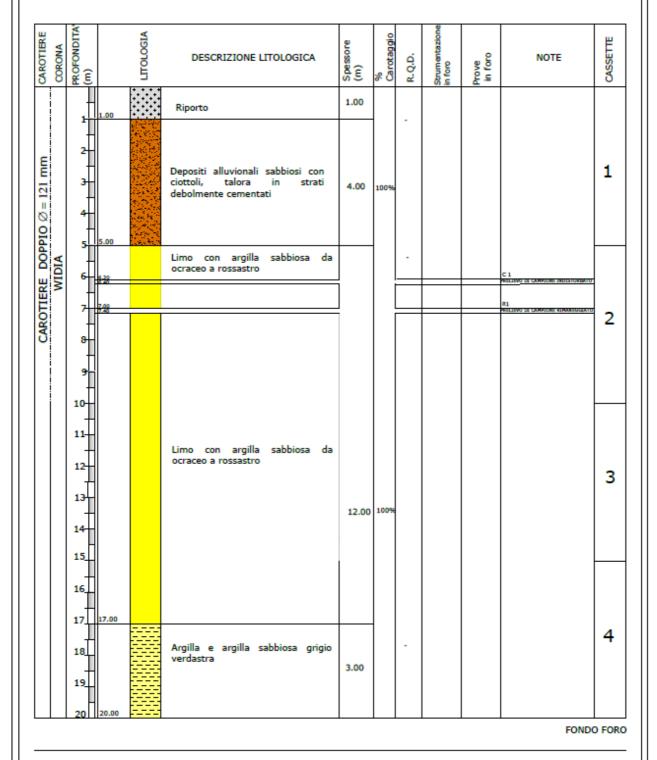
Cassetta catalogatrice n.6 da 25 a 30 m

Cassetta catalogatrice n.7 da 35 a 40 m

Dott. geol. Claudia de Bari

Rapporto indagini Pagina 8 di 48

PAG. I


SONDAGGIO S2

PERFORAZIONE A CAROTAGGIO CONTINUO

INDAGINI GEOGNOSTICHE RELATIVE AL GRANDE PROGETTO: "ADEGUAMENTO FERROVIARIO DELL'AREA METROPOLITANA NORD BARESE"

(DGR Puglia del 12/02/2008, n. 146)
FERMATA DI BARLETTA SCALO

ESECUTORE: SONDAG s.r.l. - BARI

DATA ESECUZIONE: 18/04/2014

QUOTA s.l.m. 19.22 m

REDATTA DA: Dott. geol. Claudia de BARI

SONDAGGIO 2

INDAGINI GEOGNOSTICHE RELATIVE ALL'ADEGUAMENTO FERROVIARIO DELLE FERROVIE NORD BARESI FERMATA DI BARLETTA SCALO

ESECUTORE:SONDAG S.R.L.

Cassetta catalogatrice n.1 da 0 a 5 m

Cassetta catalogatrice n.3 da 10 a 15 m

Cassetta catalogatrice n.2 da 5 a 10 m

Cassetta catalogatrice n.4 da 15 a 20 m

Dott. geol. Claudia de Bari

Rapporto indagini Pagina 10 di 48

SONDAGGIO S3

PERFORAZIONE A CAROTAGGIO CONTINUO

INDAGINI GEOGNOSTICHE RELATIVE AL GRANDE PROGETTO: "ADEGUAMENTO FERROVIARIO DELL'AREA METROPOLITANA NORD BARESE"

(DGR Puglia del 12/02/2008, n. 146)
FERMATA DI BARLETTA SCALO

ESECUTORE: SONDAG s.r.l. - BARI

CAROTIERE	PROFONDITA' (m)	ATOLOGIC	LITOLOGIA	DESCRIZIONE LITOLOGICA		Spessore (m)	% Carotaggio	R.Q.D.	Strumentazione in foro	Prove in foro	NOTE	CASSETTE
	H	1.00		Riporto		1.00						
DOPPIO Ø=121 mm IA	3-4-	5.09		Depositi alluvionali sabbiosi co ciottoli	on	4.00	100%			ш		1
CAROTIERE DOPPIO WIDIA	5 6- 7- 8- 9-			Limo con argilla sabbiosa d ocraceo a rossastro	da				ASSENTE	ASSENTE	F1	2
	10 11- 12- 13- 14-	10.09		Limo con argilla sabbiosa o ocraceo a rossastro	da	10.00	100%	,			R1 PRICEIVO DE CARROUNE RIPANTOSIANO	3

FONDO FORO

DATA ESECUZIONE: 18/04/2014

QUOTA s.l.m. 19.29 m

REDATTA DA: Dott. geol. Claudia de BARI

Rapporto indagini Pagina 11 di 48

SONDAGGIO 3

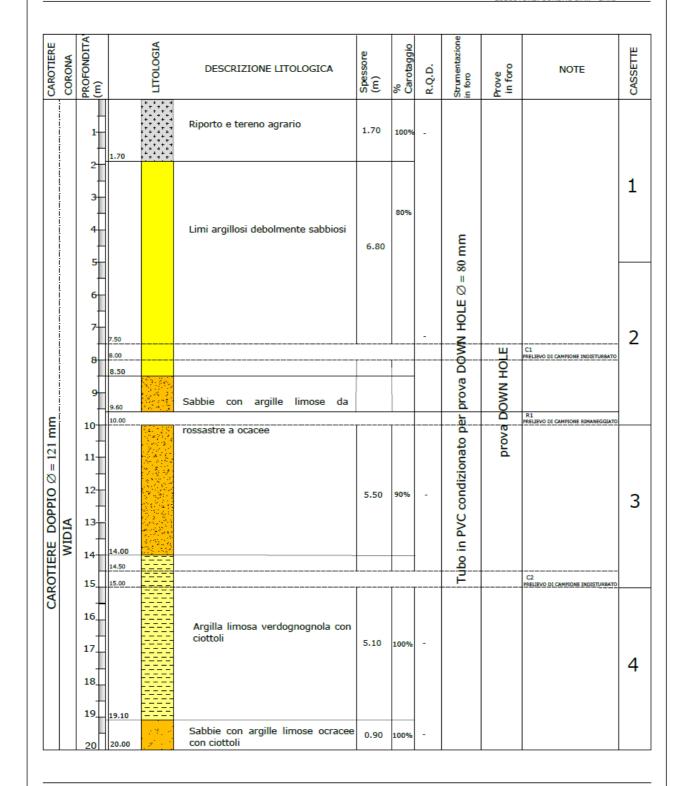
INDAGINI GEOGNOSTICHE RELATIVE ALL'ADEGUAMENTO FERROVIARIO DELLE FERROVIE NORD BARESI FERMATA DI BARLETTA SCALO

ESECUTORE:SONDAG S.R.L.

Cassetta catalogatrice n.1 da 0 a 5 m

Cassetta catalogatrice n.2 da 5 a 10 m

Cassetta catalogatrice n.3 da 10 a 15 m


Dott. geol. Claudia de Bari

Rapporto indagini Pagina 12 di 48

SONDAGGIO S4-DH2 PERFORAZIONE A CAROTAGGIO CONTINUO

INDAGINI GEOGNOSTICHE RELATIVE AL GRANDE PROGETTO: "ADEGUAMENTO FERROVIARIO DELL'AREA METROPOLITANA NORD BARESE" (DGR Puglia del 12/02/2008, n. 146) FERMATA DI BARLETTA CENTRALE

ESECUTORE: SONDAG s.r.l. - BARI

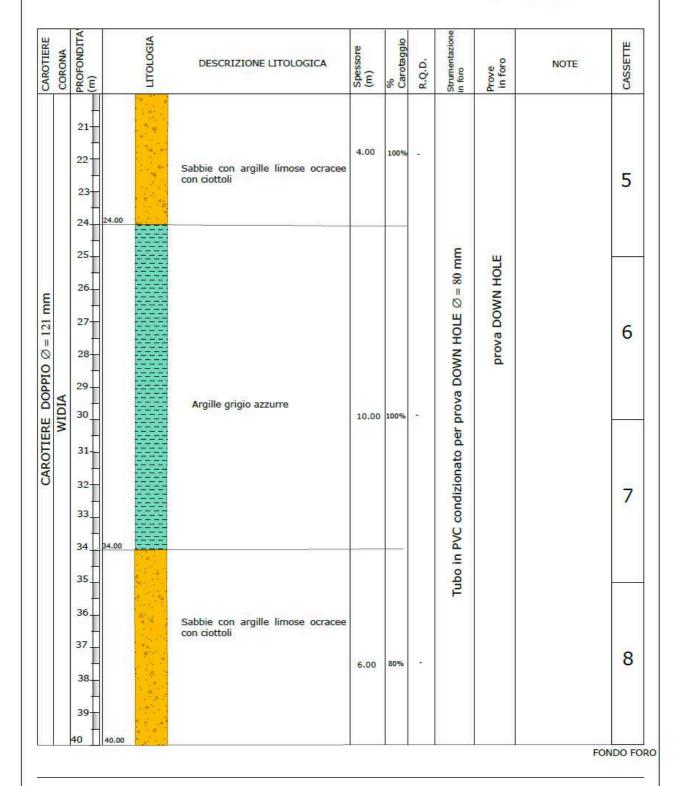
DATA ESECUZIONE: 26/04/2014

QUOTA s.l.m. 19.43 m

REDATTA DA: Dott. geol. Claudia de BARI

Rapporto indagini Pagina 13 di 48

SONDAGGIO S4 - DH2


PERFORAZIONE A CAROTAGGIO CONTINUO

INDAGINI GEOGNOSTICHE RELATIVE AL GRANDE PROGETTO: "ADEGUAMENTO FERROVIARIO DELL'AREA METROPOLITANA NORD BARESE"

(DGR Puglia del 12/02/2008, n. 146)

FERMATA DI BARLETTA CENTRALE

ESECUTORE: SONDAG s.r.l. - BARI

DATA ESECUZIONE: 26/04/2014

QUOTA s.l.m. 19.43 m

REDATTA DA: Dott. geol. Claudia de BARI

SONDAGGIO 4 - DOWN HOLE 2

INDAGINI GEOGNOSTICHE RELATIVE ALL'ADEGUAMENTO FERROVIARIO DELLE FERROVIE NORD BARESI FERMATA DI BARLETTA CENTRALE

ESECUTORE:SONDAG S.R.L.

Cassetta catalogatrice n.1 da 0 a 5 m

Cassetta catalogatrice n.3 da 10 a 15 m

Cassetta catalogatrice n.2 da 5 a 10 m

Cassetta catalogatrice n.4 da 15 a 20 m

Dott. geol. Claudia de Bari

Rapporto indagini Pagina 15 di 48

SONDAGGIO 4 - DOWN HOLE 2

INDAGINI GEOGNOSTICHE RELATIVE ALL'ADEGUAMENTO FERROVIARIO DELLE FERROVIE NORD BARESI FERMATA DI BARLETTA CENTRALE

ESECUTORE:SONDAG S.R.L.

Cassetta catalogatrice n.5 da 20 a 25 m

Cassetta catalogatrice n.6 da 30 a 35 m

Cassetta catalogatrice n.6 da 25 a 30 m

Cassetta catalogatrice n.7 da 35 a 40 m

Dott. geol. Claudia de Bari

Rapporto indagini Pagina 16 di 48

Rapporto indagini Pagina 17 di 48

PROVE PENETROMETRICHE STATICHE (C.P.T.)

DESCRIZIONE DELLA PROVA

La prova penetrometrica statica, o CPT (Cone Penetration Test), è una prova eseguita in situ per poter determinare la stratificazione e le proprietà meccaniche del terreno, offrendo la possibilità di ottenere dei dati in continuo.

È indicata per tutti i terreni, tranne depositi ghiaiosi o terreni sabbiosi molto addensati. Consente di ricostruire la successione litostratigrafica dell'area e avere una stima (in continuo) dei valori di resistenza alla punta e di attrito laterale è stata eseguita una prova penetrometrica.

La prova CPT consiste nello spingere verticalmente nel terreno, mediante pressione, una punta conica di dimensioni standard, misurando separatamente, ma con continuità, lo sforzo necessario per la penetrazione della punta, di dimensioni e caratteristiche standardizzate, infissa nel terreno a velocità costante (v = 2 cm / sec \pm 0,5 cm / sec), e l'adesione terreno-acciaio di un manicotto posto sopra la punta.

La penetrazione viene effettuata tramite un dispositivo di spinta (martinetto idraulico), opportunamente ancorato al suolo con coppie di aste elicoidali della profondità di 4.0 metri, che agisce su una batteria doppia di aste (aste coassiali esterne cave e interne piene), alla cui estremità è collegata la punta.

Lo sforzo necessario per l'infissione della punta conica è misurato per mezzo di manometri, collegati al martinetto mediante una testa di misura idraulica.

La punta conica (del tipo telescopico) è dotata di un manicotto sovrastante, per la misura dell'attrito laterale: punta / manicotto tipo "Begemann".

Le dimensioni della punta / manicotto sono standardizzate, e precisamente:

- diametro Punta Conica meccanica $\emptyset = 35,7$ mm
- area di punta Ap = 10 cmq
- angolo di apertura del cono $\alpha = 60^{\circ}$
- superficie laterale del manicotto Am = 150 cmg

Lo strumento utilizzato per l'indagine è il PAGANI TG 63 200 KN le cui caratteristiche sono:

- Rif. Norme ASTM D3441-86
- Diametro punta conica meccanica $\emptyset = 35.7 \text{ mm}$
- Angolo di apertura punta α = 60 °
- Area punta Ap= 10 cmq
- Manicotto laterale di attrito tipo "Begemann" (h 133 mm sup. lat. Am. 150 cmq)
- Velocità di avanzamento costante $V = 2 \text{ cm} / \text{sec} (\pm 0.5 \text{ cm} / \text{sec})$

Rapporto indagini Pagina 18 di 48

- Costante di trasformazione Ct = 10
- Anello Allargatore
- Cella di carico
- Sistema di misura idraulico
- Sistema di acquisizione automatico o manuale
- Passo del penetrometro (intervallo entro cui effettua la lettura) = 20 cm.

Le letture di campagna durante l'infissione sono le seguenti:

- lettura alla punta **LP** = prima lettura di campagna durante l'infissione relativa all'infissione della sola punta
- lettura laterale LT = seconda lettura di campagna relativa all'infissione della punta+manicotto
- lettura totale **LLTT** = terza lettura di campagna relativa all'infissione delle aste esterne (tale lettura non sempre viene rilevata in quanto non è influente metodologicamente ai fini interpretativi).

I dati rilevati della prova sono quindi una coppia di valori per ogni intervallo di lettura costituiti da LP (Lettura alla punta) e LT (Lettura della punta + manicotto), le relative resistenze vengono quindi desunte per differenza, inoltre la resistenza laterale viene conteggiata 20 cm sotto (alla quota della prima lettura della punta).

Trasferiti i dati ad un PC essi sono stati elaborati da un programma di calcolo "STATIC PROBING" della GeoStru Software s.a.s.

La resistenze specifiche Qc (Resistenza alla punta RP) e Ql (Resistenza Laterale RL o fs attrito laterale specifico che considera la superficie del manicotto di frizione) vengono desunte tramite opportune costanti e sulla base dei valori specifici dell'area di base della punta e dell'area del manicotto di frizione laterale tenendo in debito conto che:

- Ap = 1' area punta (base del cono punta tipo "Begemann") = 10 cmq
- Am = area del manicotto di frizione = 150 cmq
- Ct = costante di trasformazione = 10

L'elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La prova penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri e la quota di eventuali falde.

I dati di uscita principali sono RP (Resistenza alla punta) e RL (Resistenza laterale) che il programma calcola automaticamente; inoltre viene calcolato il Rapporto RP/RL (Rapporto

Rapporto indagini Pagina 19 di 48

Begemann 1965) e il Rapporto RL/RP (Rapporto Schmertmann 1978 – FR %-) restituito poi graficamente.

I valori sono calcolati con le seguenti formule:

$$qc (RP) = (LP \times Ct) / 10 cmq$$
 Resistenza alla punta
 $ql (RL) (fs) = [(LT - LP) \times Ct] / 150 cmq$ Resistenza laterale

dove:

qc (RP) = Lettura alla punta LP x Costante di Trasformazione Ct / Superficie Punta Ap (paria a 10 cmq)

ql (RL)(fs) = Lettura laterale LT- Lettura alla punta LP x Costante di Trasformazione Ct / Am area del manicotto di frizione (pari a 150 cmq)

La resistenza laterale viene conteggiata 20 cm sotto alla quota della prima lettura della punta.

Si ottiene la stratigrafia e l'interpolazione automatica degli strati (Douglas, Olsen R. – 1981); graficamente si può inoltre osservare come si presenta tutto il litotipo investigato ed avere quindi una classificazione dei terreni dai risultati delle prove CPT (vedasi allegati).

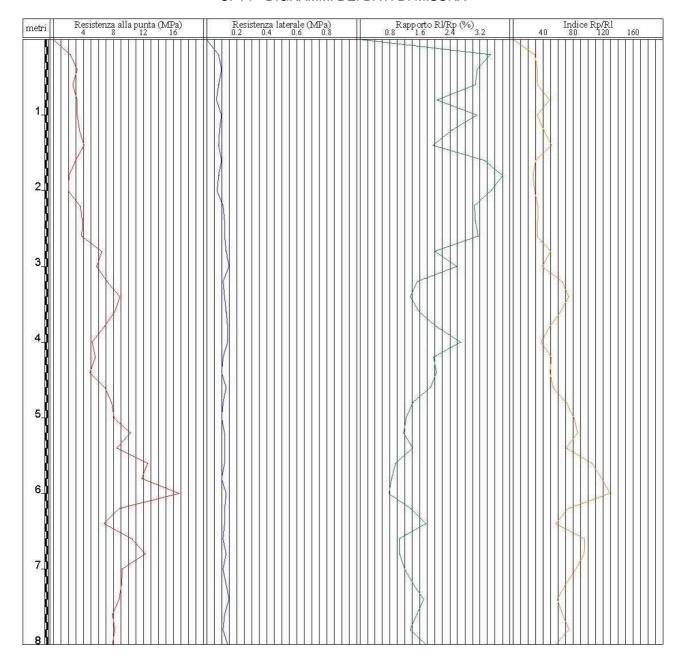
RISULTATI DELLA PROVA

La prova penetrometrica statica è stata spinta fino ad una profondità di 8.0 metri. Il litostrato investigato è rappresentato da terreni sabbiosi con intercalato un livello di 0.60 m di argille limose e sabbiose che si rileva tra 1.40 m e 2.0 m di profondità.

I valori della resistenza alla punta e dell'attrito laterale sono variabili in relazione alla pezzatura del terreno, ne deriva che la resistenza alla punta che nei terreni a grana fine rilevati è compresa tra 2.0 e 3.0 MPa aumenta fino a 16.8 MPa in corrispondenza delle sabbie addensate. Il valore della resistenza laterale varia da un minimo di 0.066 MPa ad un massimo di 0.150 MPa.

Il programma di elaborazione dei dati della prova penetrometrica statica definisce i valori di coesione non drenata e di angolo di attrito.

La coesione che si ricava da detta prova è una coesione non drenata che viene calcolata solo per i terreni a granulometria fine, in questo caso le argille limose e sabbiose, e presenta valori che variano da 0.133-0.200 MPa.

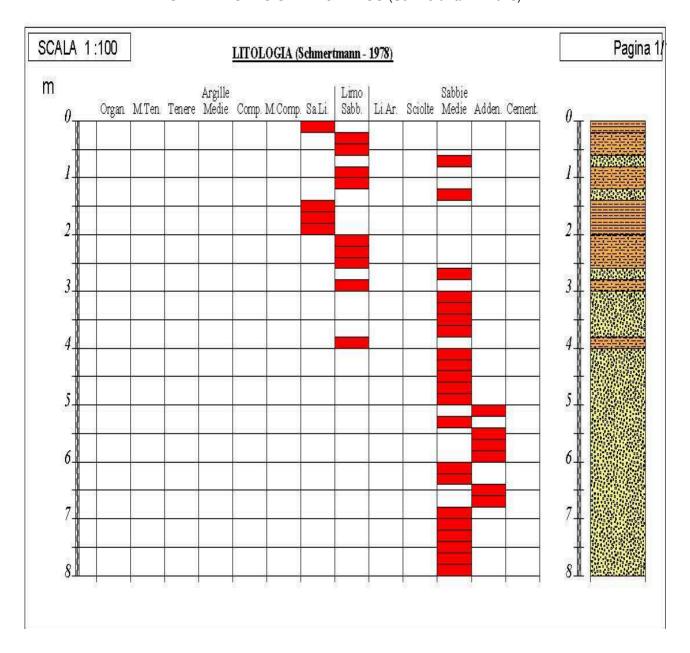

Per quanto riguarda l'angolo di attrito il programma ha restituito questi valori ad eccezione del livello argilloso; esso varia da un minimo di 50° ad un massimo di 60°.

Rapporto indagini Pagina 20 di 48

TABULATI DI PROVA

Committente: Ferrotramviaria Engineering Cantiere: Stazione di Barletta Scalo e Barletta Centrale Località: Stazione di Barletta Scalo

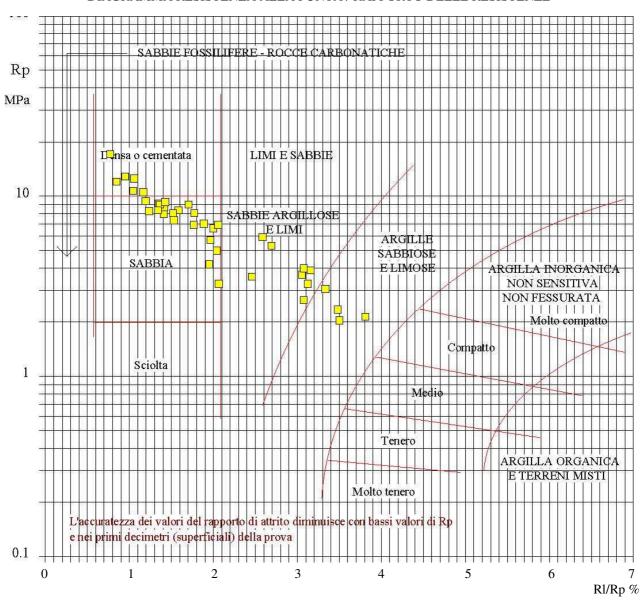
CPT1 - DIGRAMMI DEI DATI DI MISURA


Rapporto indagini Pagina 21 di 48

CPT1 - TABELLA DEI DATI DI MISURA CON ELABORAZIONI

n°	Profondità (m)	Rp (MPa)	RI (MPa)	RI/Rp (%)	Dens. relat. (%)	Mod. Young (MPa)	c _u (MPa)	φ' (°)	LITOLOGIA Schmertmann (1969
1	0.20	2.300	0.080	3.48		4.501	0.153		Argille limose e sabbiose
2	0.40	3.200	0.100	3.13	100.00	6.278		64.4	Sabbie argillose e limi
3	0.60	2.600	0.080	3.08	92.06	5.407		60.2	Sabbie argillose e limi
4	0.80	3.200	0.066	2.06	93.88	6.596		59.4	Sabbia
5	1.00	3.200	0.100	3.13	90.69	6.698		57.9	Sabbie argillose e limi
6	1.20	3.500	0.086	2.46	90.64	7.328		57.3	Sabbie argillose e limi
7	1.40	4.100	0.080	1.95	92.97	8.488		57.2	Sabbia
8	1.60	3.000	0.100	3.33		6.537	0.200		Argille limose e sabbiose
9	1.80	2.100	0.080	3.81		4.826	0.140		Argille limose e sabbiose
10	2.00	2.000	0.070	3.50		4.654	0.133		Argille limose e sabbiose
11	2.20	3.600	0.110	3.06	82.76	7.821		53.6	Sabbie argillose e limi
12	2.40	3.900	0.120	3.08	83.81	8.431		53.5	Sabbie argillose e limi
13	2.60	3.800	0.120	3.16	81.92	8.287		52.9	Sabbie argillose e limi
14	2.80	6.500	0.130	2.00	96.24	13.244		55.6	Sabbia
15	3.00	5.800	0.150	2.59	91.99	12.065		54.5	Sabbie argillose e limi
16	3.20	7.200	0.110	1.53	97.26	14.597		55.4	Sabbia
17	3.40	8.900	0.120	1.35	100.00	17.580		56.3	Sabbia
18	3.60	8.200	0.130	1.59	99.30	16.457		55.5	Sabbia
19	3.80	6.800	0.140	2.06	93.16	14.065		54.0	Sabbia
20	4.00	5.200	0.140	2.69	84.73	11.194		52.1	Sabbie argillose e limi
21	4.20	5.600	0.110	1.96	86.16	11.975		52.3	Sabbia
22	4.40	4.900	0.100	2.04	81.66	10.698		51.2	Sabbia
23	4.60	6.900	0.130	1.88	90.84	14.432		52.9	Sabbia
24	4.80	7.800	0.110	1.41	93.74	16.088		53.4	Sabbia
25	5.00	8.100	0.100	1.23	94.24	16.667		53.4	Sabbia
26	5.20	10.300	0.120	1.17	100.00	20.542		54.6	Sabbia addensata
27	5.40	8.500	0.120	1.41	94.52	17.466		53.2	Sabbia
28	5.60	12.600	0.120	0.95	100.00	24.535		55.3	Sabbia addensata
29	5.80	11.800	0.100	0.85	100.00	23.258		54.7	Sabbia addensata
30	6.00	16.800	0.130	0.77	100.00	31.494		56.6	Sabbia addensata
31	6.20	8.800	0.120	1.36	93.53	18.169		52.6	Sabbia
32	6.40	6.800	0.120	1.76	85.69	14.573		50.9	Sabbia
33	6.60	10.500	0.110	1.05	97.70	21.242		53.3	Sabbia addensata
34	6.80	12.300	0.130	1.06	100.00	24.378		54.0	Sabbia addensata
35	7.00	9.200	0.110	1.20	93.07	19.038		52.1	Sabbia
36	7.20	9.100	0.130	1.43	92.35	18.896		51.9	Sabbia
37	7.40	8.800	0.150	1.70	91.00	18.392		51.5	Sabbia
38	7.60	7.900	0.120	1.52	87.52	16.786		50.7	Sabbia
39	7.80	8.200	0.110	1.34	88.22	17.366		50.8	Sabbia
40	8.00	7.900	0.140	1.77	86.79	16.844		50.4	Sabbia

Rapporto indagini Pagina 22 di 48


CPT1 - PROFILO STRATIGRAFICO (Schmertmann - 1978)

Rapporto indagini Pagina 23 di 48

Guida per la classificazione dei terreni da risultati di prove CPT eseguite con punta meccanica (Schmertmann, 1965)

DIAGRAMMA RESISTENZA ALLA PUNTA / RAPPORTO DELLE RESISTENZE

0.00-8.00 m		

Rapporto indagini Pagina 24 di 48

Rapporto indagini Pagina 25 di 48

PROVE PENETROMETRICHE DINAMICHE CONTINUE (SCPT)

DESCRIZIONE DELLA PROVA

La prova penetrometrica dinamica continua consiste nell'infiggere nel terreno una punta conica battendo sulle aste con un maglio a caduta libera e contando il numero di colpi necessari all'avanzamento della punta, di successive quantità costanti.

Le prove sono state eseguite con un penetrometro TG 63-200 della PAGANI, le cui caratteristiche tecniche sono di seguito riportate:

- Maglio a caduta libera Kg 72.5
- Aste in acciaio speciale $\phi = 50.46$ mm; L = 100 cm; Kg = 7
- Punta conica della superficie 20.43 cm²;
- Altezza di caduta libera maglio 75 cm.

Di seguito (vedi "TABULATI DI PROVA") si allegano gli istogrammi penetrometrici, con i numeri di colpi registrati durante l'indagine e le corrispondenti tabelle, da cui tramite correlazioni di letteratura sono stati ricavati i parametri geotecnici significativi. Da questi si ricava la sintesi dei sottostanti prospetti.

prova SCPT1:

- da 0.00 m a 2.10 m	Terreno di riporto

- da 2.10 m a 8.10 m Sabbie limose

prova SCPT2:

- da 0.00 m a 3.00 m	Terreno di riporto

- da 3.00 m a 8.10 m Sabbie limose

prova SCPT3:

- da 0.00 m a 3.00 m	Terreno di riporto
- da 3 00 m a 8 10 m	Sabbie limose

prova SCPT4:

- da 0.00 m a 0.60 m Terreno di riporto

- da 0.60 m a 1.80 m Sabbie

- da 1.80 m a 8.10 m Sabbie limose

Rapporto indagini Pagina 26 di 48

Le caratteristiche geotecniche della *sabbie limose s*ono:

Prova penetrometrica	SCPT1	SCPT2	SCPT3	SCPT4
Densità relativa (%)	51	35	45	29
Angolo di attrito (°)	35	31	33	31
Modulo Young (kg/cmq)	209	132	169	131
Modulo edometrico (kg/cmq)	82	51	66	50
Coesione (kg/cmq)	0	0	0	0
Peso di volume (gr/cmc)	2.10	1.78	1.97	1.77
Classificazione AGI	Mod. Addens.	Mod. Addens.	Mod. Addens.	Mod. Addens.
Modulo di Poisson	0.3	0.33	0.32	0.33
Modulo di def. al taglio (kg/cmq)	1432	649	1024	633
Modulo di reazione (Kg/cmc)	5.16	2.43	3.84	2.37

Le caratteristiche geotecniche della *sabbie* riscontrate nella prova SCPT4 *s*ono:

Prova penetrometrica		4
Densità relativa	(%)	74
Angolo di attrito	(°)	39
Modulo Young	(kg/cmq)	274
Modulo edometrico	(kg/cmq)	109
Coesione	(kg/cmq)	0
Peso di volume	(gr/cmc)	2.20
Classificazione AGI		Addens.
Modulo di Poisson		0.27
Modulo di def. al tagl	2081	
Modulo di reazione (l	Kg/cmc)	6.89

Rapporto indagini Pagina 27 di 48

TABULATI DI PROVA

Committente: Ferrotramviaria Engineering Cantiere: Stazione di Barletta Scalo e Barletta Centrale Località : Stazione di Barletta Scalo e Barletta Centrale - Comune di Barletta

Caratteristiche Tecniche-Strumentali Sonda: SCPT (Standard Cone Penetration Test)

Rif. Norme	DIN 4094
Peso Massa battente	72,5 Kg
Altezza di caduta libera	0,75 m
Peso sistema di battuta	6 Kg
Diametro punta conica	50,46 mm
Area di base punta	20 cm ²
Lunghezza delle aste	1 m
Peso aste a metro	7 Kg/m
Profondità giunzione prima asta	0,80 m
Avanzamento punta	0,30 m
Numero colpi per punta	N(30)
Coeff. Correlazione	1,15
Rivestimento/fanghi	No
Angolo di apertura punta	60 °

Rapporto indagini Pagina 28 di 48

PROVA SCPT1 - Barletta Scalo

Strumento utilizzato Prova eseguita in data Profondità prova Falda non rilevata SCPT (Standard Cone Penetration Test) 25/05/14 8,10 mt

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,30	8	0,853	52,42	61,48	2,62	3,07
0,60	7	0,847	45,56	53,79	2,28	2,69
0,90	7	0,842	41,84	49,72	2,09	2,49
1,20	8	0,836	47,52	56,82	2,38	2,84
1,50	13	0,781	72,14	92,34	3,61	4,62
1,80	7	0,826	41,09	49,72	2,05	2,49
2,10	4	0,822	21,70	26,41	1,09	1,32
2,40	11	0,817	59,35	72,64	2,97	3,63
2,70	16	0,763	80,59	105,65	4,03	5,28
3,00	27	0,709	118,04	166,57	5,90	8,33
3,30	24	0,705	104,34	148,06	5,22	7,40
3,60	15	0,751	69,49	92,54	3,47	4,63
3,90	4	0,797	18,46	23,16	0,92	1,16
4,20	10	0,794	45,95	57,89	2,30	2,89
4,50	13	0,740	55,71	75,25	2,79	3,76
4,80	19	0,737	81,07	109,99	4,05	5,50
5,10	34	0,634	117,54	185,39	5,88	9,27
5,40	38	0,631	130,75	207,20	6,54	10,36
5,70	33	0,628	113,03	179,93	5,65	9,00
6,00	29	0,675	100,94	149,44	5,05	7,47
6,30	27	0,673	93,62	139,14	4,68	6,96
6,60	35	0,620	111,89	180,36	5,59	9,02
6,90	29	0,668	94,63	141,66	4,73	7,08
7,20	34	0,616	102,25	166,09	5,11	8,30
7,50	18	0,713	62,73	87,93	3,14	4,40
7,80	24	0,661	77,53	117,24	3,88	5,86
8,10	27	0,659	82,65	125,37	4,13	6,27

STIMA PARAMETRI GEOTECNICI PROVA SCPT1

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato 1	8,87	2,10	Terzaghi-Peck	0,60

Qc (Resistenza punta Penetrometro Statico)

	Nspt	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm ²)
Strato 1	8,87	2,10	Robertson (1983)	17,74

Modulo Edometrico

		011101110			
Nspt Prof. Str		Prof. Strato	Correlazione	Eed	
			(m)		(Kg/cm ²)
	Strato 1	8,87	2,10	Stroud e Butler (1975)	40,70

Rapporto indagini Pagina 29 di 48

Modulo di Young

	Nspt Prof. Str		Correlazione	Ey
		(m)		(Kg/cm²)
Strato 1	8,87	2,10	Apollonia	88,70

Classificazione AGI

	Nspt Prof. Strate		Correlazione	Classificazione
		(m)		
Strato 1	8,87	2,10	Classificaz. A.G.I. (1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di
		(m)		volume
				(t/m³)
Strato 1	8,87	2,10	Meyerhof ed altri	1,93

Peso unità di volume saturo

	Nspt	Prof. Strato	Correlazione	Peso unità di
		(m)		volume saturo
				(t/m^3)
Strato 1	8,87	2,10	Bowles 1982, Terzaghi-Peck 1948/1967	

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 2	26,85	8,10	26,85	Gibbs & Holtz 1957	51,32

Angolo di resistenza al taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato 2	26,85	8,10	26,85	Sowers (1961)	35,52

Modulo di Young

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm²)
Strato 2	26,85	8,10	26,85	Bowles (1982) Sabbia Media	209,25

Modulo Edometrico

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo Edometrico		
		(m)	presenza falda		(Kg/cm²)		
Strato 2	26,85	8,10	26,85	Begemann 1974 (Ghiaia con	82,62		
				sabbia)			

Classificazione AGI

CAMBBILITY I G I							
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione AGI		
		(m)	presenza falda				
Strato 2	26,85	8,10	26,85	Classificazione A.G.I. 1977	MODERATAMENTE		
					ADDENSATO		

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m^3)
Strato 2	26,85	8,10	26,85	Meyerhof ed altri	2,10

Peso unità di volume saturo

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma Saturo
		(m)	presenza falda		(t/m^3)
Strato 2	26,85	8,10	26,85	Terzaghi-Peck 1948-1967	

Rapporto indagini Pagina 30 di 48

Modu	lo d	i Po	isson

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
Strato 2	26,85	8,10	26,85	(A.G.I.)	0,3

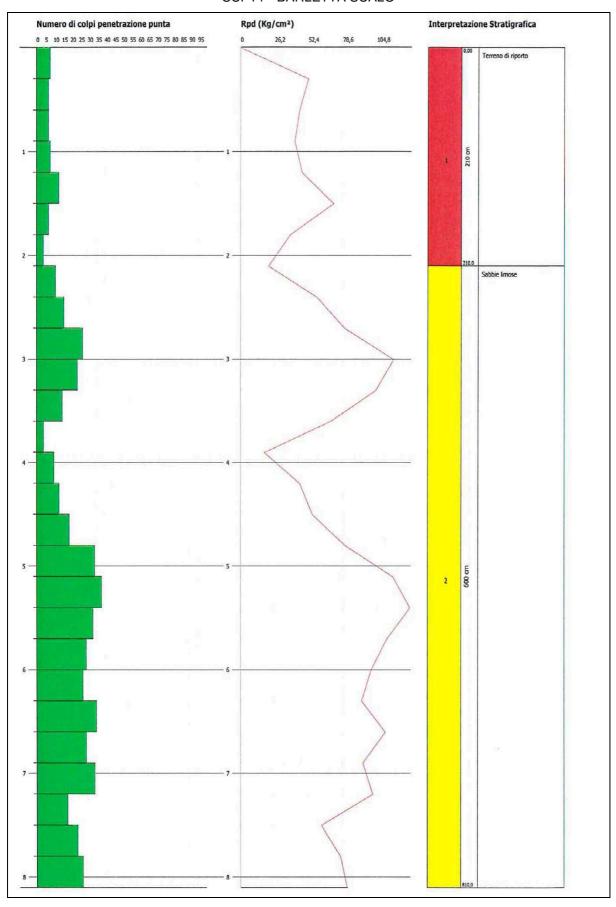
Modulo di deformazione a taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm²)
Strato 2	26,85	8,10	26,85	Ohsaki (Sabbie pulite)	1432,59

Velocità onde

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Velocità onde
		(m)	presenza falda		m/s
Strato 2	26,85	8,10	26,85	Ohta & Goto (1978) Limi	165,535

Modulo di reazione Ko


	Nspt	Prof. Strato		Correlazione	Ko
		(m)	presenza falda		
Strato 2	26,85	8,10	26,85	Navfac 1971-1982	5,16

Qc (Resistenza punta Penetrometro Statico)

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Qc
		(m)	presenza falda		(Kg/cm²)
Strato 2	26,85	8,10	26,85	Robertson 1983	53,70

Rapporto indagini Pagina 31 di 48

SCPT1 - BARLETTA SCALO

Rapporto indagini Pagina 32 di 48

PROVA SCPT2 – Barletta Scalo

Strumento utilizzato Prova eseguita in data Profondità prova Falda non rilevata SCPT (Standard Cone Penetration Test) 8,10 mt

Profondità	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
(m)	•	riduzione sonda	ridotta	(Kg/cm²)	ammissibile con	ammissibile
, ,		Chi	(Kg/cm²)	, ,	riduzione	Herminier -
			, ,		Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm ²)	
0,30	10	0,853	65,53	76,85	3,28	3,84
0,60	14	0,797	85,75	107,58	4,29	5,38
0,90	15	0,792	84,33	106,55	4,22	5,33
1,20	8	0,836	47,52	56,82	2,38	2,84
1,50	2	0,831	11,81	14,21	0,59	0,71
1,80	2	0,826	11,74	14,21	0,59	0,71
2,10	2	0,822	10,85	13,21	0,54	0,66
2,40	3	0,817	16,19	19,81	0,81	0,99
2,70	2	0,813	10,73	13,21	0,54	0,66
3,00	3	0,809	14,97	18,51	0,75	0,93
3,30	6	0,805	29,79	37,02	1,49	1,85
3,60	7	0,801	34,59	43,19	1,73	2,16
3,90	5	0,797	23,07	28,94	1,15	1,45
4,20	7	0,794	32,16	40,52	1,61	2,03
4,50	12	0,790	54,90	69,47	2,75	3,47
4,80	23	0,687	91,48	133,14	4,57	6,66
5,10	25	0,684	93,24	136,31	4,66	6,82
5,40	15	0,731	59,79	81,79	2,99	4,09
5,70	9	0,778	38,19	49,07	1,91	2,45
6,00	7	0,775	27,97	36,07	1,40	1,80
6,30	8	0,773	31,86	41,23	1,59	2,06
6,60	14	0,720	51,97	72,14	2,60	3,61
6,90	7	0,768	26,26	34,19	1,31	1,71
7,20	6	0,766	22,44	29,31	1,12	1,47
7,50	5	0,763	18,65	24,42	0,93	1,22
7,80	8	0,761	29,75	39,08	1,49	1,95
8,10	7	0,759	24,68	32,50	1,23	1,63

STIMA PARAMETRI GEOTECNICI PROVA SCPT2

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 2	11,57	8,10	11,57	Gibbs & Holtz 1957	35,1

Angolo di resistenza al taglio

-			·g			
		Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
			(m)	presenza falda		(°)
	Strato 2	11,57	8,10	11,57	Sowers (1961)	31,24

Rapporto indagini Pagina 33 di 48

Modulo di Young	Mo	dulo	di	Yo	ung
-----------------	----	------	----	----	-----

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Modulo di Young (Kg/cm²)
Strato 2	11,57	8,10	11,57	Bowles (1982) Sabbia Media	132,85

Modulo Edometrico

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo Edometrico
		(m)	presenza falda		(Kg/cm²)
Strato 2	11,57	8,10	11,57	Begemann 1974 (Ghiaia con	51,23
				sabbia)	

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione AGI
		(m)	presenza falda		
Strato 2	11,57	8,10	11,57	Classificazione A.G.I. 1977	MODERATAMENTE
	•		•		ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m^3)
Strato 2	11,57	8,10	11,57	Meyerhof ed altri	1,78

Peso unità di volume saturo

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma Saturo
		(m)	presenza falda		(t/m^3)
Strato 2	11,57	8,10	11,57	Terzaghi-Peck 1948-1967	1,93

Modulo di Poisson

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Poisson
		(m)	presenza falda		
Strato 2	11,57	8,10	11,57	(A.G.I.)	0,33

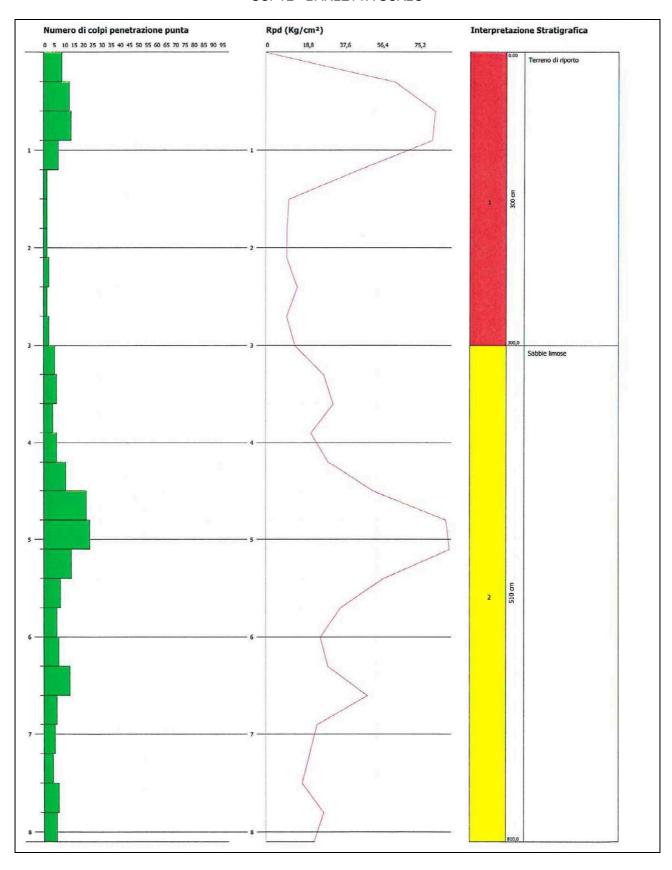
Modulo di deformazione a taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm²)
Strato 2	11,57	8,10	11,57	Ohsaki (Sabbie pulite)	649,30

Velocità onde

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Velocità onde
		(m)	presenza falda		m/s
Strato 2	11,57	8,10	11,57	Ohta & Goto (1978) Limi	145,454

Modulo di reazione Ko


	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Ko
		(m)	presenza falda		
Strato 2	11,57	8,10	11,57	Navfac 1971-1982	2,43

Qc (Resistenza punta Penetrometro Statico)

Qu' (Transportinu parita i entre difference)						
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Qc	
		(m)	presenza falda		(Kg/cm²)	
Strato 2	11.57	8.10	11.57	Robertson 1983	23.14	

Rapporto indagini Pagina 34 di 48

SCPT2 - BARLETTA SCALO

Rapporto indagini Pagina 35 di 48

PROVA SCPT3 - Barletta Scalo

Strumento utilizzato Prova eseguita in data Profondità prova

SCPT (Standard Cone Penetration Test) 25/05/14 8,10 mt

Falda non rilevata

Profondità	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
(m)	-	riduzione sonda	ridotta	(Kg/cm²)	ammissibile con	ammissibile
, ,		Chi	(Kg/cm ²)	, ,	riduzione	Herminier -
					Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm ²)	, ,
0,30	11	0,853	72,08	84,53	3,60	4,23
0,60	13	0,797	79,62	99,90	3,98	4,99
0,90	7	0,842	41,84	49,72	2,09	2,49
1,20	4	0,836	23,76	28,41	1,19	1,42
1,50	0	0,831	23,76	28,41	1,19	1,42
1,80	0	0,826	23,76	28,41	1,19	1,42
2,10	0	0,822	23,76	28,41	1,19	1,42
2,40	2	0,817	10,79	13,21	0,54	0,66
2,70	2	0,813	10,73	13,21	0,54	0,66
3,00	2	0,809	9,98	12,34	0,50	0,62
3,30	5	0,805	24,82	30,85	1,24	1,54
3,60	5	0,801	24,70	30,85	1,24	1,54
3,90	4	0,797	18,46	23,16	0,92	1,16
4,20	8	0,794	36,76	46,31	1,84	2,32
4,50	19	0,740	81,43	109,99	4,07	5,50
4,80	23	0,687	91,48	133,14	4,57	6,66
5,10	12	0,784	51,30	65,43	2,56	3,27
5,40	7	0,781	29,81	38,17	1,49	1,91
5,70	11	0,778	46,67	59,98	2,33	3,00
6,00	11	0,775	43,96	56,69	2,20	2,83
6,30	18	0,723	67,05	92,76	3,35	4,64
6,60	18	0,720	66,82	92,76	3,34	4,64
6,90	21	0,668	68,52	102,58	3,43	5,13
7,20	25	0,666	81,29	122,12	4,06	6,11
7,50	43	0,563	118,35	210,05	5,92	10,50
7,80	24	0,661	77,53	117,24	3,88	5,86
8,10	24	0,659	73,47	111,44	3,67	5,57

STIMA PARAMETRI GEOTECNICI PROVA SCPT3

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 2	18,8	8,10	18,8	Gibbs & Holtz 1957	45,03

Angolo di resistenza al taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato 2	18,8	8,10	18,8	Sowers (1961)	33,26

Rapporto indagini Pagina 36 di 48

	Mo	dulo	di	Young
--	----	------	----	-------

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm²)
Strato 2	18,8	8,10	18,8	Bowles (1982) Sabbia Media	169,00

Modulo Edometrico

1.10000	011101110				
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo Edometrico
		(m)	presenza falda		(Kg/cm²)
Strato 2	18,8	8,10	18,8	Begemann 1974 (Ghiaia con	66,08
				sabbia)	

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione AGI
		(m)	presenza falda		
Strato 2	18,8	8,10	18,8	Classificazione A.G.I. 1977	MODERATAMENTE
			· 		ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m^3)
Strato 2	18,8	8,10	18,8	Meyerhof ed altri	1,97

Peso unità di volume saturo

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma Saturo
		(m)	presenza falda		(t/m^3)
Strato 2	18,8	8,10	18,8	Terzaghi-Peck 1948-1967	1,97

Modulo di Poisson

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
Strato 2	18,8	8,10	18,8	(A.G.I.)	0,32

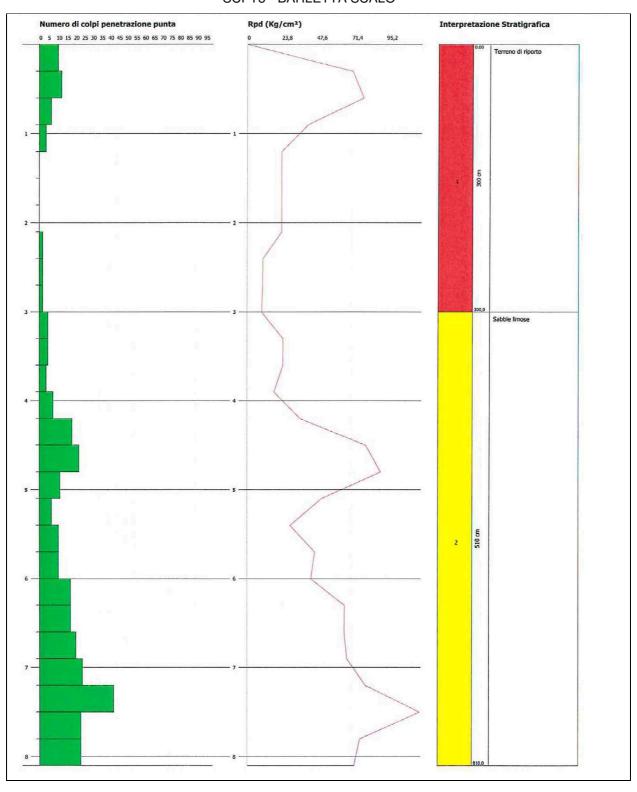
Modulo di deformazione a taglio

		Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
			(m)	presenza falda		(Kg/cm²)
St	trato 2	18,8	8,10	18,8	Ohsaki (Sabbie pulite)	1024,76

Velocità onde

, crocita on	u.c				
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Velocità onde
		(m)	presenza falda		m/s
Strato 2	18.8	8,10	18.8	Ohta & Goto (1978) Limi	158,197

Modulo di reazione Ko


	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Ko
		(m)	presenza falda		
Strato 2	18,8	8,10	18,8	Navfac 1971-1982	3,84

Qc (Resistenza punta Penetrometro Statico)

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Qc
		(m)	presenza falda		(Kg/cm²)
Strato 2	18,8	8,10	18,8	Robertson 1983	37,60

Rapporto indagini Pagina 37 di 48

SCPT3 - BARLETTA SCALO

Rapporto indagini Pagina 38 di 48

PROVA SCPT4 Barletta Centrale

Strumento utilizzato Prova eseguita in data Profondità prova Falda non rilevata

SCPT (Standard Cone Penetration Test) 25/05/14 8,10 mt

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,30	8	0,853	52,42	61,48	2,62	3,07
0,60	5	0,847	32,54	38,42	1,63	1,92
0,90	19	0,792	106,82	134,96	5,34	6,75
1,20	27	0,736	141,20	191,78	7,06	9,59
1,50	50	0,631	224,17	355,15	11,21	17,76
1,80	43	0,626	191,30	305,43	9,56	15,27
2,10	15	0,772	76,43	99,05	3,82	4,95
2,40	13	0,767	65,85	85,84	3,29	4,29
2,70	22	0,713	103,55	145,27	5,18	7,26
3,00	18	0,759	84,25	111,05	4,21	5,55
3,30	16	0,755	74,49	98,71	3,72	4,94
3,60	14	0,751	64,85	86,37	3,24	4,32
3,90	10	0,797	46,15	57,89	2,31	2,89
4,20	6	0,794	27,57	34,73	1,38	1,74
4,50	6	0,790	27,45	34,73	1,37	1,74
4,80	6	0,787	27,34	34,73	1,37	1,74
5,10	4	0,784	17,10	21,81	0,85	1,09
5,40	7	0,781	29,81	38,17	1,49	1,91
5,70	7	0,778	29,70	38,17	1,49	1,91
6,00	8	0,775	31,97	41,23	1,60	2,06
6,30	8	0,773	31,86	41,23	1,59	2,06
6,60	9	0,770	35,73	46,38	1,79	2,32
6,90	8	0,768	30,01	39,08	1,50	1,95
7,20	6	0,766	22,44	29,31	1,12	1,47
7,50	7	0,763	26,11	34,19	1,31	1,71
7,80	8	0,761	29,75	39,08	1,49	1,95
8,10	8	0,759	28,20	37,15	1,41	1,86

STIMA PARAMETRI GEOTECNICI PROVA SCPT4

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 2	39,96	1,80	39,96	Gibbs & Holtz 1957	74,21
Strato 3	11,28	8,10	11,28	Gibbs & Holtz 1957	29,71

Angolo di resistenza al taglio

ingolo di resistenza di tagno					
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato 2	39,96	1,80	39,96	Sowers (1961)	39,19
Strato 3	11,28	8,10	11,28	Sowers (1961)	31,16

Rapporto indagini Pagina 39 di 48 Modulo di Young

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Modulo di Young (Kg/cm²)
Strato 2	39,96	1,80	39,96	Bowles (1982) Sabbia Media	274,80
Strato 3	11,28	8,10	11,28	Bowles (1982) Sabbia Media	131,40

Modulo Edometrico

TITOGGIO Da					
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo Edometrico
		(m)	presenza falda		(Kg/cm²)
Strato 2	39,96	1,80	39,96	Begemann 1974 (Ghiaia con	109,54
				sabbia)	
Strato 3	11,28	8,10	11,28	Begemann 1974 (Ghiaia con	50,63
				sabbia)	

Classificazione AGI

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Classificazione AGI
Strato 2	39,96	1,80	39,96	Classificazione A.G.I. 1977	ADDENSATO
Strato 3	11,28	8,10	11,28	Classificazione A.G.I. 1977	MODERATAMENTE
	·				ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m^3)
Strato 2	39,96	1,80	39,96	Meyerhof ed altri	2,20
Strato 3	11,28	8,10	11,28	Meyerhof ed altri	1,77

Peso unità di volume saturo

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma Saturo
		(m)	presenza falda		(t/m³)
Strato 2	39,96	1,80	39,96	Terzaghi-Peck 1948-1967	
Strato 3	11,28	8,10	11,28	Terzaghi-Peck 1948-1967	1,93

Modulo di Poisson

THOUSE WIT ORDON					
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Poisson
		(m)	presenza falda		
Strato 2	39,96	1,80	39,96	(A.G.I.)	0,27
Strato 3	11,28	8,10	11,28	(A.G.I.)	0,33

Modulo di deformazione a taglio

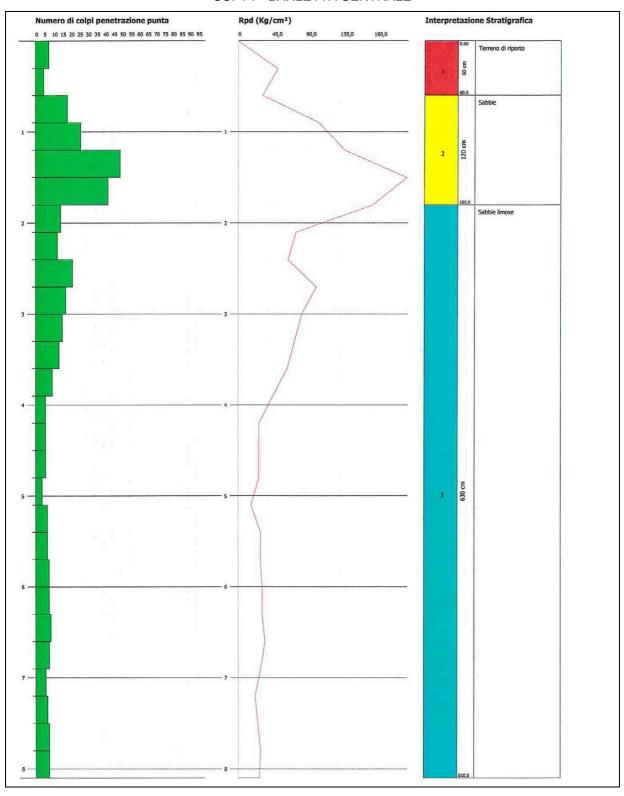
violatio di deloi mazione di digno							
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G		
		(m)	presenza falda		(Kg/cm²)		
Strato 2	39,96	1,80	39,96	Ohsaki (Sabbie pulite)	2081,81		
Strato 3	11,28	8,10	11,28	Ohsaki (Sabbie pulite)	633,99		

Velocità onde

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Velocità onde	
		(m)	presenza falda		m/s	
Strato 2	39,96	1,80	39,96	Ohta & Goto (1978) Limi	134,117	
Strato 3	11,28	8,10	11,28	Ohta & Goto (1978) Limi	141,654	

Modulo di reazione Ko

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Ko			
		(m)	presenza falda					
Strato 2	39,96	1,80	39,96	Navfac 1971-1982	6,89			
Strato 3	11,28	8,10	11,28	Navfac 1971-1982	2,37			


Rapporto indagini Pagina 40 di 48

Qc (Resistenza punta Penetrometro Statico)

Ye (Itemstermen berita I enter ometro Statico)								
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Qc			
		(m)	presenza falda		(Kg/cm²)			
Strato 2	39,96	1,80	39,96	Robertson 1983	79,92			
Strato 3	11,28	8,10	11,28	Robertson 1983	22,56			

Rapporto indagini Pagina 41 di 48

SCPT4 - BARLETTA CENTRALE

Rapporto indagini Pagina 42 di 48

Rapporto indagini Pagina 43 di 48

METODOLOGIA DI PROVA DOWN-HOLE

La tecnica Down - Hole consiste nel misurare i tempi di arrivo delle onde sismiche, generate in superficie, ad un geofono posto in un foro di sondaggio ad una determinata profondità. In particolare il geofono utilizzato in questa metodologia registra gli impulsi su tre canali provenienti da sensori orientati secondo le tre direzioni spaziali, due orizzontali ed una verticale.

Tale tecnica è quella maggiormente affidabile per la misura della velocità delle onde di taglio (Vs) da utilizzare per la definizione della categoria di sottosuolo da utilizzare ai fini della microzonazione sismica secondo la vigente normativa (NTC 2008).

Le prove vengono eseguite entro fori attrezzati con tubi in PVC filettati e provvisti di tappo di fondo; lo spazio anulare tra la parete del perforo ed i tubi viene riempito con miscela cementizia iniettata in risalita dal fondo, sino a completo rifluimento a bocca foro. Generalmente si sfruttano i fori di sondaggio a carotaggio continuo, anche per avere un utile riferimento stratigrafico: nel caso in esame le prove sono state condotte attrezzando i fori dei sondaggi S1 (prova DH1) ed S2 (prova DH2) profondi entrambi 40 m.

Per le prove in esame il punto di generazione delle vibrazioni è superficiale ed è stato mantenuto ad una distanza costante posta a 3 m dal boccapozzo. Le vibrazioni sono state generate con impulsi verticali (battendo su una piastra) e con impulsi orizzontali (battendo sulla stessa piastra resa solidale all'estremità di una tavola, zavorrata dal peso di un'autovettura): su ogni posizione del geofono sono stati acquisiti 3 differenti segnali.

Le differenti modalità con cui vengono generate le vibrazioni servono per poter distinguere, nei sismogrammi, le onde P ed SH e misurare i relativi tempi di arrivo. Dall'energizzazione del terreno in superficie e dalla misura dei tempi di arrivo del primo impulso al geofono, si ha la possibilità di determinare la velocità verticale dei litotipi riscontrati nella perforazione e i loro moduli elastici.

Con gli impulsi orizzontali generati battendo sulla piastra resa solidale all'estremità della tavola zavorrata si creano, quasi esclusivamente, onde di taglio (onde S), inoltre, generando l'impulso orizzontale in due posizioni opposte (sulla piastra a destra e a sinistra della tavola), la polarità dell'onda sismica si inverte, mentre l'onda di compressione (onde P) arriva con polarità costante. L'inversione della polarità del segnale, proveniente dai sensori orizzontali, porta ad annullare il segnale relativo all'onda di compressione ed enfatizzare quello relativo all'onda di taglio.

Ogni misurazione è stata registrata con il sismografo PASI 3 canali con l'utilizzo di una massa battente di 9 kg quale sorgente delle onde sismiche.

Il geofono è stato posizionato a diverse profondità risalendo da fondo foro con passo 2.0 m sino ad una profondità di 2.0 m dal piano campagna.

Dai sismogrammi registrati sono stati determinati i tempi di arrivo delle onde P e i tempi di arrivo delle onde SH. I tempi di arrivo sono stati corretti con l'aggiunta di un valore, che rappresenta il termine di correzione necessario affinchè, posta una distanza non trascurabile dall'asse del perforo (in questo caso di 3 m), il percorso dei raggi sismici possa essere considerato verticale. Il tempo verticale o corretto t_V , cioè il tempo di propagazione dell'onda elastica secondo l'asse del perforo, sarà uguale a : $t_V = t \cos \alpha$.

Attraverso i dati acquisiti con l'indagine down-hole è stato possibile elaborare le velocità delle onde V_S relative ai singoli intervalli di profondità indagati.

Rapporto indagini Pagina 44 di 48

Grande Progetto: "Adeguamento ferroviario dell'area metropolitana Nord barese"

Tabella Riassuntiva

n.ordine 06/2014

Sondaggio Profondità S1 - DH1 40 m Ubicazione Prova Down-hole: Comune di Barletta (BT)

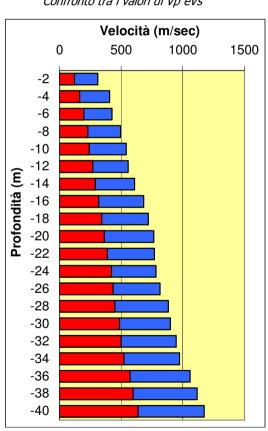
Committente:

Ferrotramviaria Engineering spa

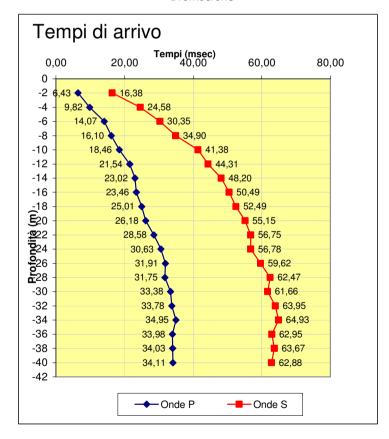
Profondità dal boccap.	Distanza di battuta	Fattore correttivo	Tempo Vp misurato	Tempo Vp corretto	Tempo Vs misurato	Tempo Vs corretto	Velocità onde P	Velocità onde S
- 2 m	3 m	0,555	11,60	6,43	29,53	16,38	310,82	122,10
- 4 m	3 m	0,800	12,27	9,82	30,73	24,58	407,50	162,71
- 6 m	3 m	0,894	15,73	14,07	33,93	30,35	426,46	197,71
- 8 m	3 m	0,936	17,20	16,10	37,27	34,90	496,74	229,25
- 10 m	3 m	0,958	19,27	18,46	43,20	41,38	541,79	241,67
- 12 m	3 m	0,970	22,20	21,54	45,67	44,31	557,18	270,84
- 14 m	3 m	0,978	23,54	23,02	49,29	48,20	608,23	290,48
- 16 m	3 m	0,983	23,87	23,46	51,37	50,49	681,98	316,89
- 18 m	3 m	0,986	25,35	25,01	53,21	52,49	719,85	342,95
- 20 m	3 m	0,989	26,47	26,18	55,77	55,15	764,03	362,63
- 22 m	3 m	0,991	28,84	28,58	57,28	56,75	769,89	387,63
- 24 m	3 m	0,992	30,87	30,63	57,22	56,78	783,50	422,70
- 26 m	3 m	0,993	32,12	31,91	60,02	59,62	814,84	436,06
- 28 m	3 m	0,994	31,93	31,75	62,83	62,47	881,94	448,20
- 30 m	3 m	0,995	33,55	33,38	61,97	61,66	898,65	486,52
- 32 m	3 m	0,996	33,93	33,78	64,23	63,95	947,25	500,39
- 34 m	3 m	0,996	35,09	34,95	65,18	64,93	972,70	523,66
- 36 m	3 m	0,997	34,10	33,98	63,17	62,95	1059,38	571,87
- 38 m	3 m	0,997	34,14	34,03	63,87	63,67	1116,53	596,81
- 40 m	3 m	0,997	34,21	34,11	63,06	62,88	1172,53	636,10

Rapporto indagini Pagina 45 di 48

Grande Progetto: "Adeguamento ferroviario dell'area metropolitana Nord barese"


Caratterizzazione Sismostratigrafica

n.ordine 006/2014


Sondaggio S1 - DH1 Profondità 40 m Ubicazione Prova Down-hole: Comune di Barletta (BT)

Committente: Ferrotramviaria Engineering spa

Confronto tra i valori di Vp eVs

Dromocrone

Rapporto indagini Pagina 46 di 48

Grande Progetto: "Adeguamento ferroviario dell'area metropolitana Nord barese"

Tabella Riassuntiva

n.ordine 06/2014

Sondaggio Profondità S4 - DH2 40 m Ubicazione Prova Down-hole: Comune di Barletta (BT)

Committente:

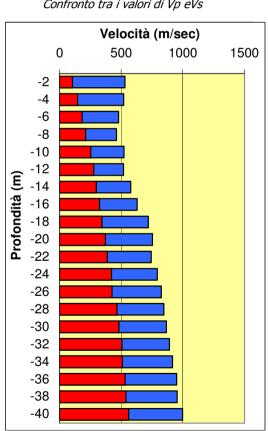
Ferrotramviaria Engineering spa

Profondità dal boccap.	Distanza di battuta	Fattore correttivo	Tempo Vp misurato	Tempo Vp corretto	Tempo Vs misurato	Tempo Vs corretto	Velocità onde P	Velocità onde S
- 2 m	3 m	0,555	6,80	3,77	34,54	19,16	530,23	104,39
- 4 m	3 m	0,800	9,60	7,68	34,36	27,49	520,83	145,52
- 6 m	3 m	0,894	14,01	12,53	36,87	32,98	478,82	181,94
- 8 m	3 m	0,936	18,53	17,35	40,60	38,01	461,09	210,44
- 10 m	3 m	0,958	20,00	19,16	41,33	39,59	522,02	252,61
- 12 m	3 m	0,970	23,87	23,16	44,67	43,34	518,20	276,90
- 14 m	3 m	0,978	24,80	24,25	48,12	47,05	577,33	297,54
- 16 m	3 m	0,983	25,87	25,43	49,93	49,07	629,25	326,03
- 18 m	3 m	0,986	25,33	24,99	53,10	52,38	720,42	343,66
- 20 m	3 m	0,989	26,80	26,50	54,40	53,80	754,62	371,76
- 22 m	3 m	0,991	29,87	29,60	57,20	56,68	743,34	388,17
- 24 m	3 m	0,992	30,53	30,29	57,30	56,86	792,23	422,11
- 26 m	3 m	0,993	31,73	31,52	61,40	61,00	824,85	426,26
- 28 m	3 m	0,994	33,25	33,06	60,50	60,16	846,92	465,46
- 30 m	3 m	0,995	34,76	34,59	62,76	62,45	867,37	480,40
- 32 m	3 m	0,996	36,01	35,85	63,54	63,26	892,54	505,83
- 34 m	3 m	0,996	37,24	37,10	66,98	66,72	916,54	509,59
- 36 m	3 m	0,997	38,02	37,89	67,86	67,63	950,15	532,34
- 38 m	3 m	0,997	39,94	39,82	70,83	70,61	954,39	538,17
- 40 m	3 m	0,997	40,21	40,10	71,48	71,28	997,57	561,17

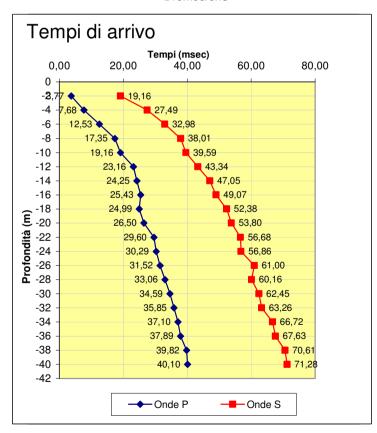
Rapporto indagini Pagina 47 di 48

Grande Progetto: "Adeguamento ferroviario dell'area metropolitana Nord barese"

Caratterizzazione Sismostratigrafica


n.ordine 006/2014

Sondaggio S4 - DH2 Profondità 40 m


Ubicazione Prova Down-hole: Comune di Barletta (BT)

Committente: Ferrotramviaria Engineering spa

Confronto tra i valori di Vp eVs

Dromocrone

Rapporto indagini Pagina 48 di 48